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Abstract

Graph, consisting of a set of vertices and a set of edges, is a geometric object that can not
only visualize but also mathematical characterize the geometric structures in data. Graphs
also model relations or connections between different units and have applications in various
fields such as epidemiology, sociology, biology, and chemistry. We first take advantage of
graphs from a geometric perspective. We propose a data analysis framework that constructs
weighted graphs, called skeletons, to encode the geometric structures in data and utilizes
the learned geometric information to assist the downstream analysis tasks such as clustering
and regression.

For clustering, we introduce a density-aided method called Skeleton Clustering that can
detect clusters in multivariate and even high-dimensional data with irregular shapes. To
bypass the curse of dimensionality, we propose surrogate density measures that are less
dependent on the dimension but have intuitive geometric interpretations. The clustering
framework constructs a concise representation of the given data as an intermediate step and
can be thought of as a combination of prototype methods, density-based clustering, and
hierarchical clustering. We show by theoretical analysis and empirical studies that skeleton
clustering leads to reliable clusters in multivariate and high-dimensional scenarios.

For regression tasks, we propose a novel framework specialized for covariates concen-
trated around some low-dimension geometric structures. The proposed framework first
learns a graph representation of the covariates, which we call the skeleton, to summarize
the geometric structures. Then we apply nonparametric regression techniques to estimate
the regression function on the skeleton, which, notably, bypasses the curse of dimensionality.
We derive statistical and computational properties of the proposed regression framework and
use simulations and real data examples to illustrate its effectiveness. Our framework has the
advantage that predictors from distinct geometric structures can be accounted for and is
robust to additive noise and noisy observations.

Graph, as a structure to represent connections, is a helpful tool in modeling contact
networks, which is incorporated in various epidemic models. However, missing links in the
observed contact network are inevitable, which raises concern over the robustness of epidemic
models in this regard. To address this concern, we assess epidemic models under missingness
and present some preliminary results from this ongoing project.



Chapter 1

Introduction

Graphs, consisting of a set of vertices and a set of edges, have many applications in

various research fields such as machine learning, network analysis, and causal inference. Our

research focuses on two perspectives of graphs. On one hand, graphs, as geometric objects,

can help not only visualize but also mathematical characterize the geometric structures in

data. On the other hand, graphs model relations or connections between different units and

have applications in various fields such as epidemiology, sociology, economy, biology, and

chemistry.

We first take advantage of graphs from a geometric perspective. Finding meaningful

geometric or topological description of datasets is of great interest in virtue of uncovering

hidden structural information, particularly when data in a high-dimensional Euclidean space

is assumed to lie on a lower dimensional manifold. This is a major focus of Topological Data

Analysis (Wasserman, 2016) and Manifold Learning, in which graphs play an important

role. For nonlinear dimension reduction techniques such as Laplacian Eigenmaps (Belkin
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and Niyogi, 2003) and Diffusion Maps (Coifman and Lafon, 2006), a weighted graph is first

constructed based on local neighborhoods, some versions of graph Laplacian is constructed,

and spectral analysis of the graph Laplacian leads to the desired results. Latter works have

shown the convergence of such discrete graph Laplacian to the Laplace-Beltrami operator

(Belkin et al., 2006a; Belkin and Niyogi, 2008; Berry and Harlim, 2014; Berry and Sauer,

2019), which adds topological interpretations to such approaches.

Geometric data is also attracting attention from the deep learning field. Under the

similar principle as Felix Klein’s “Erlangen Programme” (Klein, 1893) that characterizes

geometries through symmetry groups, Geometric Deep Learning (Bronstein et al., 2017;

Battaglia et al., 2018; Bronstein et al., 2021) derives neural network architectures through

group invariance and equivariance. Under this general blueprint, one approach encodes

geometric information through graphs and performs learning tasks with the Graph Neural

Networks (GNNs) (Veličković et al., 2018; Xu et al., 2019; Chamberlain et al., 2021a,b;

Bouritsas et al., 2022). In particular, Wang et al. (2019) dynamically builds neighborhood

graphs from point clouds and aggregates edge features through layers for classification and

segmentation tasks. Kazi et al. (2022) learns the probabilistic latent graphs in the deep

learning architecture for optimal classification.

One direction of our research also use graphs to extract the underlying geometric infor-

mation in a dataset. Unlike the approaches that set graph vertices as individual points in the

data point cloud, we propose a data analysis framework that constructs a representational

weighted graphs, called skeletons, to encode the geometric structures in data with a small

number of vertices, and utilizes the learned graph to assist the downstream analysis tasks

such as clustering and regression.
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In addition to represent geometric information, graph is a structure of connections, which

make it natural to represent various networks, with contact network being one example.

Due to the advancement in mobile communication technology, collection of contact network

data, at least some proxies for it, becomes feasible, and studies have directly incorporated

such data to model epidemic behaviors. Some early works collect mobility data based on

phone call and text records to model disease transmission behaviors (Wesolowski et al.,

2012; Bengtsson et al., 2015; Engebretsen et al., 2020; Milusheva, 2020). Mobility networks

derived from commute flows data are also used as proxy to contact network for epidemic

modeling (Fajgelbaum et al., 2021; Alsing et al., 2020). Facing the challenge of the global

pandemic, the Google COVID-19 Aggregated Mobility Research Dataset becomes a major

source to drive research in epidemic modeling (Kapoor et al., 2020; Ruktanonchai et al.,

2020; Venkatramanan et al., 2021).

Despite the importance of contact data in modeling epidemic behavior, collecting contact

networks is still difficult, and, as described above, research teams use proxies for contact

networks, with mismeasurements inevitable. Chandrasekhar et al. (2021) demonstrates that

small misalignment of the model with the underlying network of interactions necessitates

non-trivial failure of local targeting policy guided by epidemiological models. Changes in

contact network has substantial implications disease transmissions, which raises concern over

the robustness of epidemic models in this regard. To address one aspect of this concern, we

assess the sensitivity of mathematical models, in terms of policy decisions, to missingness

about the underlying contact graph.

In Chapter 2, we use graphs to represent the data structures and perform clustering.

We introduce a density-aided method called Skeleton Clustering that can detect clusters
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in multivariate and even high-dimensional data with irregular shapes. To bypass the curse

of dimensionality, we propose surrogate density measures that are less dependent on the

dimension but have intuitive geometric interpretations. The clustering framework constructs

a concise representation of the given data as an intermediate step and can be thought of as a

combination of prototype methods, density-based clustering, and hierarchical clustering. We

show by theoretical analysis and empirical studies that skeleton clustering leads to reliable

clusters in multivariate and high-dimensional scenarios.

In Chapter 3, we use graphs to encode the geometric information in the covariate space

and to fit regression functions. We propose a novel framework specialized for covariates

concentrated around some low-dimension geometric structures. The proposed framework

first learns a graph representation of the covariates, which we call the skeleton, to summarize

the geometric structures. Then we apply nonparametric regression techniques to estimate

the regression function on the skeleton, which, notably, bypasses the curse of dimensionality.

We derive statistical and computational properties of the proposed regression framework and

use simulations and real data examples to illustrate its effectiveness. Our framework has the

advantage that predictors from distinct geometric structures can be accounted for and is

robust to additive noise and noisy observations.

In Chapter 4, we focus on the usage of contact network in epidemic modeling. We assess

how missingness in the contact network affects the identification of risky sets. We present

some preliminary theoretical and simulation results from this ongoing project.

4



Chapter 2

Skeleton Clustering: Dimension-Free

Density-Aided Clustering

2.1 Introduction

Density-based clustering (Azzalini and Torelli, 2007; Menardi and Azzalini, 2014; Chacón,

2015) is a popular framework to group observations into clusters defined based on the un-

derlying probability density function (PDF). In practice, when the PDF is usually unknown,

it is estimated via the random sample and the estimated PDF is then used to obtain the

resulting clusters. Many clustering methods have been proposed within the framework of

density-based clustering. The mode clustering (Li et al., 2007; Chacón and Duong, 2013;

Chen et al., 2016) find clusters via the local modes of the underlying PDF. When the kernel

density estimator (KDE) is used for density estimation, the mode clustering can be done

easily via the mean-shift algorithm (Fukunaga and Hostetler, 1975; Cheng, 1995; Carreira-
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Perpinán, 2015). Another famous density-based clustering approach is the level-set clustering

(Cuevas et al., 2000, 2001; Mason et al., 2009; Rinaldo et al., 2012), which creates clusters

as the connected components of high density regions. The well-known DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) method (Ester et al., 1996) is also a

special case of level set clustering. Moreover, the cluster tree (Stuetzle and Nugent, 2010;

Chaudhuri and Dasgupta, 2010; Chaudhuri et al., 2014; Eldridge et al., 2015; Kim et al.,

2016) is a density-based clustering approach combining information from both modes and

level-sets. This method creates a tree structure with each leaf represents a mode and the

tree describes the evolution of level-set clusters at different density levels.

Compared to the classical k-means clustering (Lloyd, 1982; Hartigan and Wong, 1979;

Pollard, 1982) and the model-based clustering methods (Fraley and Raftery, 2002), a density-

based clustering approach is capable of finding clusters with irregular shapes and gives an

intuitive interpretation based on the underlying PDF. Furthermore, defining clusters based

on the density function makes it possible to view the clustering problem as an estimation

problem: the clusters from the true PDF are the parameters of interest and the estimated

clusters are sample quantities utilized for approximation.

Although density-based clustering enjoys many advantages, it has a fundamental limita-

tion: the curse of dimensionality. Because a density-based clustering method often involves

a density estimation step, it does not scale well with the dimension. Specifically, the con-

vergence rate of a density estimator is OP (n
− 2

4+d ) under usual smoothness conditions (Scott,

2015; Wasserman, 2006), which is slow when d is large. To overcome the curse of dimension-

ality and to apply density-based clustering to high-dimensional data, we borrow the idea of

merging a large number of k-means clusters from (Peterson et al., 2018; Fred and Jain, 2005;
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Maitra, 2009; Baudry et al., 2010; Shin et al., 2019) and propose density-aided similarity

measures suitable for high-dimensional settings.

The idea of merging prototypes has also attracted great attention from the model-based

clustering to overcome the limitations on parametric assumptions. In particular, there are

several methods for merging Gaussian-mixture models (Hennig, 2010) such as Dip test ap-

proach (Hartigan and Hartigan, 1985), ridgeline elevation (Ray and Lindsay, 2005), misclas-

sification method (Tibshirani and Walther, 2005), multi-layer approach (Li, 2005), entropy-

based method (Baudry et al., 2010), level set-based method (Scrucca, 2016), and modal

clustering (Chacón, 2019). The work by Aragam et al. (2020) reconstructs a nonparametric

mixture model by fitting the data with a large number of general nonparametric mixture

components and then partitions them into a small number of final clusters.

Our idea can be summarized as follows. We first find a large set of protoclusters (called

knots) by running k-means clustering. Nearby knots are then connected by edges to form a

graph that we call the skeleton. The similarities between connected knots are measured by

density-aided criteria that are estimable even in high dimensions. Finally, we merge knots

according to a linkage criterion to create the final clusters. Because the construction involves

creating a skeleton representation of the data, we call this method Skeleton Clustering.

To illustrate the limitation of the classical approaches and to highlight the effectiveness of

skeleton clustering, we conduct a simple simulation in Figure 2.1. It is a d = 200 dimensional

data consisted of five components with non-spherical shapes. The actual structure is in 2-

dimensional space as illustrated in Figure 2.1. We add Gaussian noises in other dimensions to

make it a d = 200 dimensional data (see Section 2.5 for more details). Traditional k-means

and spectral clustering fail to find the five components and mean shift algorithm cannot
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form clusters due to the high dimensionality of the data. However, our proposed method

(bottom-right panel) can successfully recover the underlying five components.

Figure 2.1: Yinyang Data with dimension 200. On the bottom-right is the clustering result of the
skeleton clustering with the proposed Voronoi density similarity measure.

Outline. In section 2.2, we describe the skeleton clustering framework. In section 2.3, we

introduce similarity measures that can be utilized in the skeleton clustering framework. In

section 2.4, we provide some consistency results of the sample similarity measures and the

clustering performance guarantee. In section 2.5, we present simulation results to demon-

strate the effectiveness of skeleton clustering in dealing with different data scenarios and to

guide some choices in the framework for applications. In section 2.6, we test the performance

of skeleton clustering on real datasets. In section 2.7, we conclude the paper and point some

directions for future research.
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Algorithm 1 Skeleton clustering

Input: Observations X1, · · · , Xn, final number of clusters S.
1. Knot construction. Perform k-means clustering with a large number of k; the centers
are the knots (Section 2.2.1).
2. Edge construction. Apply approximate Delaunay triangulation to the knots (Section
2.2.2).
3. Edge weights construction. Add weights to each edge using either Voronoi density,
Face density, or Tube density similarity measure (Section 2.3).
4. Knots segmentation. Use linkage criterion to segment knots into S groups based on
the edge weights (Section 2.2.4).
5. Assignment of labels. Assign a cluster label to each observation based on which
knot-group the nearest knot belongs (Section 2.2.5).

2.2 Skeleton Clustering Framework

In this section we formally introduce the skeleton clustering framework. Let X =

{X1, . . . , Xn} be a random sample from an unknown distribution with density p supported

on a compact set X ∈ Rd. The goal of clustering is to partition X into clusters X1, . . .XS,

where S is the final number of clusters.

A summary of the skeleton clustering framework is provided in Algorithm 1. Figure 2.2

illustrates the overall procedure of the skeleton clustering method. Starting with a collection

of observations (panel (a)), we first find knots, the representative points of the entire data

(panel (b)). Then we compute the corresponding Voronoi cells induced by the knots (panel

(c)) and the edges associating the nearby Voronoi cells (panel (d)). For each edge in the

graph, we compute a density-aided similarity measure that quantifies the closeness of each

pair of knots. For the next step we segment knots into groups based on a linkage criterion

(single linkage in this example), leading to the dendrogram in panel (e). Finally, we choose

a threshold that cuts the dendrogram into S = 2 clusters (panel (f)) and assign cluster label

to each observation according to the knot-cluster that it belongs to (panel (g)).
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(a) Data (b) Knots (c) Voronoi Cells (d) Skeleton

(e) Dendrogram (f) Segmentation (g) Clustering

Figure 2.2: Skeleton Clustering illustrated by Two Moon Data (d=2).

In summary, the skeleton clustering consists of the following five steps: (1) Knots con-

struction, (2) Edges construction, (3) Edge weights construction, (4) Knots segmentation,

and (5) Assignment of labels. In what follows in this section, we provide a detailed de-

scription of each step except Step 3. Step 3 is the key step in our clustering framework

where we incorporate the information from the underlying density for clustering in a less

dimension-dependent way and we defer the detailed discussion of Step 3 to Section 2.3 and

Section 2.4. We include a short analysis on the computational complexity of our skeleton

clustering framework in Appendix A.

2.2.1 Knots Construction

The construction of knots is a step aiming at finding representative points in the data that

can help measure similarities between regions in the later stage. The knots can be viewed as
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landmarks inside the data where we can shift our focus from the entire data to these local

locations. A simple but reliable approach for constructing knots is the k-means algorithm.

We apply the k-means algorithm with a large number k ≫ S the desired number of final

clusters, and this procedure behaves like overfitting the k-means. Notably, we do not use

k-means procedure to obtain final clustering, but instead we use it as a intermediate step to

find concise representations of the original data.

The number of knots k is a key parameter in the knots construction step. It controls the

trade-off between the quality of the data representation and the reliability of each knot. More

knots can give better representation of the data, but, if we have too many knots, the number

of observation per knot will be small, so the uncertainty in estimation in the later stage will be

large. We find that a simple reference rule for k to be around
√
n works well in our empirical

studies (Section F). In practice, it is also advisable to prune knots with a small number of

corresponding observations because the density-aided weights (in Step 3, Section 2.3) are

estimated locally by the data belonging to each pair of knots. Knots with a few data points

can lead to unstable similarity measurements and unreliable final clustering. Moreover, to

take care of observations in the low-density areas that could cause problems for the k-means

clustering, one may first pre-process or denoise the data by removing observations in the

low-density area and then apply the k-means clustering to find out the knots.

In this work we use overfitting k-means as the default way for knots construction, but

there are alternative approaches to find knots such as subsampling, the coreset construction

methods (Bachem et al., 2017; Turner et al., 2020), and the Self-Organizing Maps (SOM)

(Heskes, 2001). We show in Appendix F that the SOM can also be used to find knots but

requires more careful treatments such as removing knots with few or even no observations
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and the performance is slightly worse than that of the overfitting k-means. The k-medians

algorithm can be another alternative method but it gave an unstable result when the dimen-

sion is large. Therefore, we choose to use the overfitting k-means algorithm in this work and

recommend using it in practice.

Remark 1. Since the k-means algorithm does not always find the global optimum, we repeat it

many times with random initial points (generally 1, 000 times or more) and choose the one with the

optimal objective function. This works well for all of our numerical analyses. Moreover, since we

are only using k-means as a tool to find a useful representation, we do not need to find the actual

global optimum. All we need is a set of knots forming a useful representation.

2.2.2 Edges Construction

With the constructed knots, our next step is to find the edges connecting them. Let

c1, · · · , ck be the given knots and we use C = {c1, · · · , ck} to denote the collection of them.

We add an edge between a pair of knots if they are neighbors, with the neighboring condition

being that the corresponding Voronoi cells (Voronoi, 1908) share a common boundary. The

Voronoi cell, or Voronoi region, Cj, associated with a knot cj is the set of all points in X

whose distance to cj is the smallest compared to other knots (See Figure 2.3). That is,

Cj = {x ∈ X : d(x, cj) ≤ d(x, cℓ) ∀ℓ ̸= j}, (2.1)

where d(x, y) is the usual Euclidean distance. Therefore, we add an edge between knots

(ci, cj) if Ci ∩ Cj ̸= ∅. Such resulting graph is the Delaunay triangulation (Delaunay, 1934)

of the set of knots C and we denote it as DT (C). In a nutshell, the skeleton graph in our

framework is given by the Delaunay triangulation of C.

The Delaunay triangulation graph is conceptually intuitive and appealing and is utilized
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Figure 2.3: Voronoi Tessellation as blue dashed lines and Delaunay Triangulation by red solid lines.

by some clustering methods to identify connected components (Azzalini and Torelli, 2007;

Scrucca, 2016), but empirically the computational complexity of the exact Delaunay triangu-

lation algorithm has an exponential dependence on the ambient dimension d (Amenta et al.,

2007; Chazelle, 1993). Given our multivariate and even high-dimensional data setting, exact

Delaunay triangulation is empirically unfavorable. Therefore, in practice, we approximate

the exact Delaunay Triangulation with D̂T (C) by examining the 2-nearest knots of the sam-

ple data points. The key observation is that, if the Voronoi cells of two knots ci, cj share

a boundary, there is a non-empty region of points whose 2-nearest knots are ci, cj. Conse-

quently, for approximation, we query the two nearest knots for each data point and have an

edge between ci, cj if there is at least one data point whose two nearest neighbors are ci, cj.

The complexity of the neighbor search depends linearly on the dimension d, which is desir-

able for high-dimensional setting (Weber et al., 1998), and this sample-based approximation

to the Delaunay Triangulation has reliable empirical performance.

2.2.3 Edge Weight Construction

Given the constructed edges and knots, we assign each edge a weight that represents

the similarity between the pair of knots. In this work, we propose some novel density-aided

quantities as the edge weights. Since the description of the similarity measures is more
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involved, we defer the detailed discussion of the similarity measures to Section 2.3. It is

worth noting here that the similarity measures proposed in this work are estimated based

on surrogates of the underlying density function (hence density-aided) and the estimation

procedure has minimal dependence on the ambient dimension. Therefore, the estimations of

the newly proposed similarity measures are reliable even under high-dimensional settings.

2.2.4 Knots Segmentation

Given the weighted skeleton graph, the next step is to partition the knots into the

desired number of final clusters, and we apply hierarchical clustering with the inverses of the

similarity measures as the distance. The choice of linkage criterion for hierarchical clustering

may depend on the underlying geometric structure of the data. We analyze several linkage

criteria under various simulation scenarios in Appendix E. Generally, single linkage gives

reliable clustering results when the components are well-separated, but average linkage works

better when there are overlapping clusters of approximately spherical shapes. Therefore, in

practice, such choice of linkage should be made base on some exploratory understanding

of the data structure, and experimenting with different linkage methods is computationally

tractable as only the knots need to be segmented.

The number of final clusters S is an essential parameter for the hierarchical clustering

procedure but can be unknown. The dendrograms given by hierarchical clustering can be

a helpful tool in this situation, displaying the clustering structure at different resolutions.

Consequently, analysts can experiment with different numbers of final clusters and choose a

cut that preserves the meaningful structures based on the dendrograms, which takes little
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extra computation. However, it is worth pointing out that with the presence of noisy data

points, the final number S being larger than the true number of meaningful components may

be needed to achieve better clustering results (see Appendix E).

Remark 2. Although the dendrogram for knots given by our method are not exactly the cluster

trees, the pruning graph cluster tree procedure proposed in Nugent and Stuetzle (2010) with excess

mass can be applied to help decide the final segmentation. Peterson et al. (2018) also presented

similar ideas choosing the final number of clusters by looking at the lifetime of the clusters in the

dendrogram. Additionally, the traditional “elbow” methods can be used to determine the number

of clusters. An inferential choice can also be made using the gap statistics (Tibshirani et al., 2001).

2.2.5 Assignment of Labels

In the previous step, we have created S groups of knots and each group has a cluster

label. To pass the cluster membership to each observation, we assign a hard clustering label

to each observation according to which group its nearest knot belongs. For instance, if an

observation Xi is closest to knot cj and cj belongs to cluster ℓ, we assign cluster membership

label ℓ to observation Xi.

Remark 3. There are other methods in clustering literature for assigning labels of observations

based on identified structures. Azzalini and Torelli (2007) and Scrucca (2016) assign unlabelled

data based on density ratios. DBSCAN and HDBSCAN (Campello et al., 2015; Ester et al., 1996)

assign labels (and identify noisy points) based on k-nearest-neighbor considerations. One may use

these alternatives to assign the cluster label to each observation.
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2.3 Density-Based Edge Weights Construction

To incorporate the information of density into clustering, we calculate the edge weights

based on the underlying density function. However, the conventional notion of PDF is not

feasible in multivariate or even high-dimensional data due to the curse of dimensionality. To

resolve this issue, we introduce three density-related quantities that are estimable even when

the dimension is high.

2.3.1 Voronoi Density

The Voronoi density (VD) measures the similarity between a pair of knots (cj, cℓ) based on

the number of observations whose 2-nearest knots are cj and cℓ. We start with defining the

Voronoi density based on the underlying probability measure and then introduce its sample

analog. Given a metric d on Rd, the 2-Nearest-Neighbor (2-NN) region of a pair of knots

(cj, cℓ) is defined as

Ajℓ = {x ∈ X : d(x, ci) > max{d(x, cj), d(x, cℓ)}, ∀i ̸= j, ℓ}. (2.2)

In this work we take d(., .) to be usual Euclidean distance and use ||.|| to denote the Euclidean

norm. An example 2-NN region of a pair of knots is illustrated in Figure 2.4.

Following the idea of density-based clustering, two knots cj, cℓ belongs to the same clusters

if they are in a connected high-density region, and we would expect the 2-NN region of cj, cℓ

to have a high probability measure. Hence, the probability P(Ajℓ) = P (X1 ∈ Ajℓ) can

measure the association between cj and cℓ (see illustration in Figure 3.2 right). Based on
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Figure 2.4: Left: Orange shaded area illustrates the 2-NN region of knots 1, 2. Right: Shaded
areas illustrate the 2-NN region of knots 6, 7 and knots 2, 8.

this insight, the Voronoi density measures the edge weight of (cj, cℓ) with

SV D
jℓ =

P(Ajℓ)

∥cj − cℓ∥
. (2.3)

Namely, we divide the probability of in-between region by the mutual Euclidean distance.

The division of the distance adjusts for the fact that 2-NN regions have different sizes and

provides more weights to edges between knots close in distance. However, such division makes

the Voronoi density to be in the unit of 1/ ∥cj − cℓ∥ and hence can be scale-dependent.

In practice we estimate SV D
jℓ by a sample average. Specifically, the numerator P(Ajℓ) is

estimated by P̂n(Ajℓ) =
1
n

∑n
i=1 I(Xi ∈ Ajℓ) and the final estimator for the VD is

ŜV D
jℓ =

P̂n(Ajℓ)

∥cj − cℓ∥
. (2.4)

Note that here we are assuming that c1, · · · , ck as given beforehand. In sample version, we

replace them by the sample analog ĉ1, · · · , ĉk and replace the region Ajℓ by Âjℓ.

The Voronoi density can be computed in a fast way. The numerator, which only depends

on 2-nearest-neighbors calculation, can be computed efficiently by the k-d tree algorithm

(Bentley, 1975). For high-dimensional space, space partitioning search approaches like the

k-d tree can be inefficient but a direct linear search still gives a short run-time (Weber et al.,

1998), and with a large number of observations approximate nearest neighbor algorithms
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can be incorporated. The denominator requires distance calculation and can be burdensome

in high-dimensional settings, but note that we only need to calculate the distance for edges

present in D̂T (C), which is far less than k(k− 1)/2, where k is the number of knots. Hence,

the calculation of VD can be carried out in a fast way even for high-dimensional data with

a large sample size.

2.3.2 Face Density

Here we present another density-based quantity to measure the similarity between two

knots. Since the Voronoi cell of a knot describes the associated region, a natural way to

measure similarity between two knots is to investigate the shared boundary of the corre-

sponding Voronoi cells. If two knots are highly similar, we would expect the boundary to

lie in a high-density region and to be surrounded by many observations. Based on this idea,

we define the Face Density (FD) as the integrated PDF over the “face” (boundary) region.

Note that, although the density is involved in FD, by integrating over the face region the

problem reduces to a 1-dimensional density estimation task regardless of the dimension of

the ambient space. Formally, let the face region between two knots cj, cℓ be Fjℓ = Cj ∩ Cℓ.

At the population level, the FD is defined as

SFD
jℓ =

∫
Fjℓ

p(x)µd−1(dx) =

∫
Fjℓ

dP(x), (2.5)

where µm(dx) denotes the m-dimensional volume measure.

To estimate the FD, we utilize the idea of kernel smoothing in combination with data

projection. By the construction of the Voronoi diagram, the boundary of two Voronoi cells is

orthogonal to the line passing through the two corresponding knots (called the ‘central line’)
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and intersects the central line at the middle point regardless of the dimension of the data (see

Figure 2.3 for reference). Therefore, we estimate the FD by first projecting the observations

onto the central line and then using the 1-dimensional kernel density estimator(KDE) to

evaluate the density at the midpoint. Specifically, fix two knots cj, cℓ, let Cj,Cℓ be the

corresponding Voronoi cells, and denote Πjℓ(x) as the projection of x ∈ X onto the central

line passing through cj and cℓ, we define the estimator ŜFD
jℓ to be

ŜFD
jℓ =

1

nh

∑
Xi∈Cj∪Cℓ

K

(
Πjℓ(Xi)− (cℓ + cj)/2

h

)
(2.6)

where K is a smooth, symmetric kernel function (e.g. Gaussian kernel) and h > 0 is the

bandwidth that controls the amount of smoothing. It is noteworthy that, while the conven-

tional kernel smoothing suffers from the curse of dimensionality (Chen et al., 2017; Chacón

et al., 2011; Wasserman, 2006), the kernel estimator in equation (2.6) bypasses it.

2.3.3 Tube Density

While FD is conceptually appealing, the characterization of the face between two Voronoi

cells could be challenging since the shapes of the boundaries can be irregular. Here we

propose a measure similar to the Face density measure but has a predefined regular shape.

For a point x, we define the Disk Area centered at x with radius R and normal direction ν

(see Figure 2.5 for an illustration) as

Disk(x,R, ν) = {y : ||x− y|| ≤ R, (x− y)Tν = 0} (2.7)

To measure the similarity between knots cj and cℓ, we examine the integrated density within

the disk areas along the central line. In more details, the central line can be expressed as

{cj + t(cℓ − cj) : t ∈ [0, 1]}, and any point on the central line can be written as cj + t(cℓ − cj)
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Figure 2.5: The disk area centered at x with a radius R and a direction ν.

for some t. For a point cj + t(cℓ − cj), we define the integrated density in the disk region

(called Disk Density) as

pDiskjℓ,R(t) = P (Disk(cj + t(cℓ − cj), R, cℓ − cj)) =

∫
Disk(cj+t(cℓ−cj),R,cℓ−cj)

p(x)dx. (2.8)

The Tube Density (TD) measures the similarity between cj and cℓ as the minimal disk density

along the central line, i.e.,

STD
jℓ = inf

t∈[0,1]
pDiskjℓ,R(t) (2.9)

In other words, with given cj, cℓ, we survey all Disk Density along the central line and retrieve

the infimum as the similarity measure between two knots.

In this work, we set R based on the root mean squared distances within each Voronoi

cell. Specifically, for knot cj and the corresponding Voronoi cell Cj, we calculate

Rj =

√
1

|Cj| − 1

∑
Xℓ∈Cj

∥Xℓ − cj∥2 (2.10)

where |Cj| denotes the size of set Cj. With the uniform radius paradigm where the radius

is the same for all pairs of knots, we set R = 1
k

∑k
j=1Rj. Our empirical studies show that

this rule leads to good clustering performances and theoretical analysis also shows that this

reference rule for R leads to the consistency of the sample analog of the TD.

Note that the radius may also be chosen adaptively for each pair: we set the disk radius at

cj to be Rj for all knots and set the disk radius along the edge to be the linear interpolation

of the radii at the two connected knots. The comparison between the uniform and adaptive
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R is presented in Appendix F, and similar clustering performance is observed for the two

approaches. Hence we use uniform R by default for simplicity.

Similar to the FD, we estimate the TD by a projected KDE. Let Πjℓ(x) be the projection

of a point x on the line through cj, cℓ. We first estimate the pDisk via

p̂Diskjℓ,R(t) =
1

nh

n∑
i=1

K

(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I(||Xi − Πjℓ(Xi)|| ≤ R)

and then estimate the TD as

ŜTD
jℓ = inf

t∈[0,1]
p̂Diskjℓ,R(t). (2.11)

where the infimum is approximated by grid search.

Remark 4. The estimations of the FD and the TD involve the use of the projected kernel

density estimation, and we discuss the choices of kernel and the bandwidth selections for

kernel density estimations in Appendix F. By default, we use the Gaussian kernel with the

normal scale bandwidth selector (NS) (Chacón et al., 2011) for the best empirical results.

2.4 Asymptotic Theory of Edge Weight Estimation

In this section we focus on the theoretical properties of the similarity measures to the-

oretically explain the effectiveness of the newly proposed density-aided similarity measures.

We assume the set of knots C = {c1, . . . , ck} is given and non-random to simplify the analysis

because (1) it is hard to quantify k-means uncertainty, and (2) with large k, it is extremely

likely for k-means to stuck within local minimum. Note that this implies the corresponding

Voronoi cells C = {C1, . . . ,Ck} and the 2-NN regions {Ajℓ}j,ℓ=1,...,k,j ̸=ℓ (Equation 2.2) of all

pairs of knots are fixed as well. We allow k = kn to grow with respect to the sample size n.

Theoretical results for Voronoi density are described in this section and theoretical properties
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for the Face density and Tube density are deferred to Appendix B and C respectively. In

summary, the consistency of FD and TD are obtained based on the analysis of KDE with

additional geometric considerations, resulting in rates similar to that of the 1-dimensional

KDE under some regularity conditions. All proofs are included in Appendix D.

2.4.1 Voronoi Density Consistency

We start with the convergence rate of the VD. We consider the following condition:

(B1) There exists a constant c0 such that the minimal knot size min(j,ℓ)∈E P(Ajℓ) ≥ c0
k
and

min(j,ℓ)∈E ∥cj − cℓ∥ ≥ c0
k1/d

.

where (j, ℓ) ∈ E means that there is an edge between knots cj, cℓ in the Delaunay Triangula-

tion. Condition (B1) is a condition requiring that no Voronoi cell Ajℓ has a particularly small

size and all edges have sufficient length. This condition is mild because when the dimension

of data d is fixed, the total number of edges in the Delaunay triangulation of k points scale

at rate O(k). Because the volume shrinks at rate O(k−1), the distance is expected to shrink

at rate O(k−1/d).

Theorem 1 (Voronoi Density Convergence). Assume (B1). Then for any pair j ̸= ℓ that

shares an edge, the similarity measure based on the Voronoi density satisfies∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n

)
, (2.12)

max
j,ℓ

∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n
log k

)
, (2.13)

when n → ∞, k → ∞, n
k
→ ∞.

Theorem 1 provides the convergence rates of the sample-based Voronoi density to the
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population version Voronoi density. This result is reasonable because when the knots C are

given, the randomness in the sample-based Voronoi density is just the empirical proportion

in each cell, so it is a square-root-rate estimator based on the effective local sample size

n/k. Consequentially, Theorem 1 suggests that estimating the Voronoi density is easy in

multivariate case when the knots are given–there is no dependency with respect to the

ambient dimension. The extra log k factor in the uniform bound (Equation 2.13) comes

from the Gaussian concentration bounds.

2.4.2 Performance Guarantee for Voronoi Density

We provide below a performance guarantee in terms of the adjusted Rand Index (Rand,

1971; Hubert and Arabie, 1985) for skeleton clustering with Voronoi density edge similar-

ity. To simplify the problem, we define the true clusters as the connected components of

the skeleton graph with edges having true Voronoi density similarities SV D
jℓ over a known

threshold τ > 0. We show below that cutting the skeleton graph based on estimated edge

similarities at the same threshold τ recovers the true clustering with a high probability. Since

the knots are fixed, the clustering error comes from partitioning knots into the wrong groups,

so we will focus on the adjusted Rand Index of clustering the knots. Let the true partition

of the knots be L∗ = {L∗
ℓ}ℓ=1,...,L, where L∗

ℓ contains all the knot indices belonging to the

partition ℓ. Let the partition based on estimated edge similarities be L̂. We assume that

(P1) The true partition L∗ under the threshold τ remains the same when the thresholding

level is within (τ(1− ε), τ(1 + ε)) for some ε > 0.

This is a mild assumption because when we vary the threshold level τ , only a finite number
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of value will create a change in the partition. So (P1) holds under almost all values of τ

except for a set of Lebesgue measure 0. Let ARI(L∗, L̂) denotes the adjusted Rand Index

of the estimated partition.

Theorem 2 (Adjusted Rand Index Guarantee). Assume (B1) and (P1) and let pmin =

minj,ℓ P(Ajℓ), then

P
{
ARI(L∗, L̂) < 1

}
≤ k(k − 1) exp

(
−

1
2
ε2pminn

(1− pmin) +
1
3
ε

)
(2.14)

Theorem 2 shows that we have a good chance of recovering the “true” clusters defined

by the actual Voronoi density. The above bound is derived from the uniform concentration

bound of the Voronoi density.

2.5 Simulations

To study the effectiveness of skeleton clustering as a clustering method, we conduct sev-

eral Monte Carlo experiments. In this section we present some empirical results to illustrate

the performance of skeleton clustering in multivariate and high-dimensional settings (with

additional data examples in Appendix G). Generally, our framework with the Voronoi den-

sity similarity measure is superior among all the compared clustering methods. In Appendix

E, we use a systematic set of simulation studies to discuss the choice of linkage criteria

within our clustering framework when dealing with different datasets and at the same time

to demonstrate the robustness of the proposed framework to noisy data points and overlap-

ping clusters. We include some additional simulations to support some choices within our

framework in Appendix F.
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2.5.1 High-dimensional Setting

In this section, we demonstrate the performance of skeleton clustering on simulated

datasets: the Yinyang data and the Mickey data. We also include a simulated dataset consists

of manifold structures of different dimensions, called the Manifold Mixture data, in Appendix

G and an additional simulation called the Ring data in Appendix G. For the simulations

within Section 2.5.1 and Appendix G, when using the skeleton clustering methods, the

number of knots is set to be k = [
√
n] and the knots are chosen by k-means with 1000 random

initialization. We select smoothing bandwidth by the normal scale bandwidth selector for the

FD and TD, and the radius of TD is set to be the same for all edges with the value chosen as

described in Section 2.3.3. We use single linkage hierarchical clustering when merging knots

into final clusters with the true number of final clusters S being provided.

To highlight the importance of density-aided similarity measures, we include a similar-

ity measure called the average distance (AD) for comparison. AD measures the similarity

between cj and cℓ using the inverse of the average Euclidean distances between all pairs of

observations in the two corresponding Voronoi cells. All simulations are repeated 100 times

to obtain the distribution of the empirical performances.

Yinyang Data

The Yinyang dataset is an intrinsically 2-dimensional data containing 5 components: a big

outer circle with 2000 uniformly distributed data points, two inner semi-circles each with 200

data points generated as 2D Gaussian with standard deviation 0.1, and two clumps each with

200 data points (generated with the shapes.two.moon function with default parameters in
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Figure 2.6: Knots chosen by k-means on Yinyang data and the Dendrogram for single linkage
hierarchical clustering with similarity measured by Voronoi density.

the clusterSim library in R (Walesiak and Dudek, 2020)). The total sample size is n = 3200

and according to our reference rule we choose k = [
√
3200] = 57 knots for the skeleton clus-

tering procedure. To make the data high-dimensional, we include additional variables from a

Gaussian distribution with mean 0 and standard deviation 0.1, and we increase the dimension

of noise variables so that the total dimensions are d = 10, 100, 500, 1000. We present results

with larger standard deviations for the noisy variable in Appendix F. We empirically compare

the following clustering approaches: direct single-linkage hierarchical clustering (SL), direct

k-means clustering (KM), spectral clustering (SC), skeleton clustering with average distance

density (AD), skeleton clustering with Voronoi density (Voron), skeleton clustering with Face

density (Face), and skeleton clustering with Tube density (Tube). Since this is a simulated

data, we know that there are exactly 5 clusters and we know which cluster an observation

belongs to. The true number of clusters is provided to all the clustering algorithms. We use

the adjusted Rand Index to measure the performance of each clustering method.

The results are given in Figure 2.7. We observe that when dimension increases, tradi-

tional methods (SL, KM, SC) fail to give good clustering results while skeleton clustering

can generate nearly perfect clustering. Across all the data dimensions, the Voronoi den-

sity, the simplest measure among the three proposed similarity measures, gives the best
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Figure 2.7: Comparison of the final clustering performance in terms of adjusted Rand Index with
different clustering methods on Yinyang Data with dimension 10, 100, 500, and 1000.

performance in skeleton clustering framework. Average distance density becomes problem-

atic in high-dimensional settings but still gives better performance compared to the classical

methods. The fact that all skeleton clustering methods perform better than the traditional

methods highlights the effectiveness of using the skeleton clustering framework. Moreover,

all three density-aided similarity measures outperform the average distance, which illustrates

the power of using density-aided weights in clustering.

Mickey Data

The simulated Mickey data is an intrinsically 2-dimensional data consists of one large

circular region with 1000 data points and two small circular regions each with 100 data

points. As a result, the structures have unbalanced sizes. The total sample size is n = 1200

and we choose the number of knots to be k = [
√
1200] = 35. We include additional variables

with random Gaussian noises to make it a high dimensional data (d = 10, 100, 500, 1000) the

same way as in Section 2.5.1. The left panel of Figure 2.8 shows the scatter plot of the first

two dimensions.

We perform the same comparisons as done on the Yinyang data with the true number of

components S = 3 provided to all the clustering algorithms, and the results are displayed in
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Figure 2.9. All methods perform well when d is small but starting at d = 100, traditional

methods fail to recover the underlying clusters. On the other hand, all methods in the

skeleton clustering framework work well even when d = 1000.

Figure 2.8: An illustration of the analysis of the Mickey data with dimension 100.

Figure 2.9: Comparison of adjusted Rand index using different similarity measures on Mickey data
with dimensions 10, 100, 500, 1000.

2.6 Real Data

In this section, we apply skeleton clustering to one real data example: the graft-versus-host

disease (GvHD) data (Brinkman et al., 2007). Additionally, we analyze the Zipcode data

(Stuetzle and Nugent, 2010) in Appendix H and the Olive Oil data (Tsimidou et al., 1987)

in Appendix H.

GvHD is a significant problem in the field of allogeneic blood and marrow transplantation

which occurs when allogeneic hematopoietic stem cell transplant recipients when donor-
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Figure 2.10: Left: 3D scatterplot of the positive sample (red) and the control sample (blue).
Right: Final clustering result of combined GvHD data.

immune cells in the graft attack the tissues of the recipient. The data include samples from

a patient with GvHD containing n1 = 9083 observations and samples from a control patient

with n2 = 6809 observations. Both samples include four biomarker variables, CD4, CD8β,

CD3, and CD8. Previous studies (Lo et al., 2008; Baudry et al., 2010) have identified the

presence of high values in CD3, CD4, CD8β cell sub-populations as a significant characteristic

in the GvHD positive sample and a major objective of our analysis is to rediscovery this

region with the proposed skeleton clustering methods. In addition, our skeleton clustering

procedure shows more information and leads to a novel two-sample test.

The two samples are plotted in the left panel of Figure 2.10 focusing on the three key

variables (CD3, CD4, CD8β) with blue points from the control sample and the red points

from the GvHD positive sample. We observe that, in addition to the high CD3, CD4, CD8β

region, the distribution of the positive sample is different from the control sample also in

some region with medium to the low CD3, CD4, and CD8β. Later we will demonstrate that

our clustering framework can identify all such differences in distributions.

To apply the skeleton clustering for a fair comparisons for the two samples, we first
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construct knots from each sample separately. Specifically, we apply the k-means method

to find k1 = [
√
n1] knots for the positive sample and find k2 = [

√
n2] knots for the control

sample. This ensure that both sample are well-represented by knots. We then combine the

two samples into one dataset and combine the two sets of knots into one set with k1 + k2

knots. We create edges among the combined knots and apply the Voronoi density (VD) to

measure the edge weights. To segment the knots, we use average linkage criterion because

the clusters can be overlapping and the analysis in Appendix E suggests average linkage for

this scenario. The skeleton clustering result is displayed in the right panel of Figure 2.10

with the number of final cluster chosen to be S = 14 (Baudry et al., 2010).

For further insights, we examined the weighted proportion of positive observations in

each cluster. A proportionally smaller weight is assigned to each positive observation to

accommodate the fact that there are more positive observations (n1 = 9083 > n2 = 6809).

After such normalization a weighted proportion of 0.5 means that the positive and control

observations are balanced in one region. A summary of the weighted proportion of clusters

is presented in Table 2.1. We note that clusters 7,9,12, and 13 are majorly composed of

positive observations (proportion > 0.75), and clusters 3 and 6 are majorly composed of

observations from the control sample (proportion < 0.25). We also include the p-value for

testing if the the proportions equal 0.5. Admittedly, because we use the data to find clusters

and use the same data to do the test, the p-values in Table 2.1 may tend to be small.

Clusters with majorly positive observations and clusters with majorly control observa-

tions are depicted in the two panels in Figure 2.11. Cluster 7 corresponds to the high

CD3, CD4, CD8β region identified by previous works with nearly all data points belonging

to the positive patient. Cluster 6 is also scattered in the high CD3, CD4, CD8β region but
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Cluster 1 2 3 4 5 6 7

Size 202 948 3881 1859 338 17 812
Prop .458 .343 .008 .296 .341 .000 .934

p-value .30 7× 10−20 0 3×10−63 4×10−8 1× 10−4 6×10−103

Cluster 8 9 10 11 12 13 14

Size 468 6191 251 37 478 402 8
Prop .690 .888 .673 .669 .794 .841 .310

p-value 2×10−13 0 1×10−6 .09 6×10−30 3 ×10−33 .52

Table 2.1: Table of the sizes of the clusters and the weighted proportion of positive observations
within each cluster. A proportion 0.5 indicates that the two sample has equal proportion in the
region. The p-value is the simple proportional test to examine if the two sample has equal proportion
in that cluster.

Figure 2.11: Clusters with majorly positive observations and majorly control observations

has all the observations coming from the control sample. However, the small size (only 17

data points) of Cluster 6 makes unclear if it is a real structure or due to pure randomness.

Overall our method succeed in identifying the CD3+ CD4+ CD8β+ area for the GvHD

positive patient like the previous model-based clustering approaches. Note that the data we

are using are two individuals from the original 31 individuals in the GvHD study, which does

not account for the inter-individual variability.

Our clustering approach have some additional findings. Cluster 9, 12, and 13 also have

high proportion of positive samples. These clusters are in mid to low CD3, CD4, CD8β

region. For the control case, in addition to the small Cluster 6, Cluster 3 is a large cluster

with nearly all the observations are from the control sample. It is located in the high CD8β
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but low CD3 and CD4 region.

Model-based clustering approaches Lo et al. (2008); Baudry et al. (2010) have an advan-

tage for managing this cytometry data as they can parametrically describe the behaviors

of data samples in different regions. The overlapping between different structures and the

overall 4-dimensional feature space are also applicable with model-based clustering methods.

However, the proposed skeleton clustering approach can result in graphical representation

of each clusters that can be visualized for intuitive understanding. We include the skeleton

graphs of the GvHD data clusters from the proposed clustering approach in Appendix F.

Moreover, model-based approaches can still be limited to some regular shapes of the clusters

in the ambient space, while applying the proposed clustering method helps identify clusters

with complex structures. Cluster 9, for instance, shows a hammer-like structure based on

the skeleton representation (see Figure 27).

Our results suggest a potential procedure for diagnosing GvHD. Biomarkers from a new

patient can be divided into clusters with respect to the learned segmentation, and doctors

can mainly focus on the sample points that fall into regions 3, 7, 9, 12, and 13. If the

patient has many points in Clusters 7, 9, 12, and 13, the patient likely has GvHD. Note that

our current result is only based on two individuals and, with a descriptive purpose, is not

accounting for the variability between different individuals and different cases. To use it for

practical diagnosis, a more comprehensive analysis based on a larger and more representative

sample is required.
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2.7 Conclusion

In this work, we introduce the skeleton clustering framework that can handle multivariate

and even high-dimensional clustering problems with complex, manifold-based cluster shapes.

Our method adopts the density-based clustering idea to the high dimensional regime. The

key to bypass the curse of dimensionality is the use of density surrogates such as Voronoi

density, Face density, and Tube density that are less sensitive to the dimension. We use both

theoretical and empirical analysis to illustrate the effectiveness of the skeleton clustering

procedure. In what follows, we discuss some possible future directions:

• Accounting for the randomness of knots. For our current theoretical analysis,

we assume that the knots are given and non-random to simplify the problem. But in

practice, knots are computed from the sample data with inherent uncertainty. The

randomness of knots can affect the clustering performance because the location of knots

directly impact the Voronoi cells, which changes the value of the similarity measures

and consequently the cluster label assignments. In particular, observations on the

boundary of clusters will be more sensitive to any perturbations on the location of

knots. Currently, there are two technical challenges when dealing with random knots.

First, the randomness of knots may be correlated with the randomness of estimated

edge weight, so the calculation of rates is much more complicated. Second, while

there are established theories for k-means algorithm (Graf and Luschgy, 2000, 2002;

Hartigan and Wong, 1979), these results only apply to the global minimum of the

objective function. In reality, we are unlikely to obtain the global minimum, but

instead, our inference is based on a local minimum. It is unclear how to properly
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derive a theoretical statement based on local minima, so we leave this as future work.

• Skeleton clustering with similarity matrix. The idea of skeleton clustering may

be generalized to data where we only observe the similarity/distance matrices such

as network data. Knots can be restricted to indices in the data and we choose them

by minimizing some network-based or diffusion-related criteria. While Face and Tube

density can be difficult to adopt, the Voronoi density is still applicable since we only

need the information about pairs of observations. This might provide a new approach

for community detection in network data (Zhao, 2017; Abbe, 2017).

• Detecting boundary points between clusters. Our skeleton clustering method

can be applied to detect points on the boundary between two clusters. The idea

is simple: in the final cluster assignment, instead of assigning only one label to an

observation, we assign h labels to an observation based on the cluster labels of h-

nearest knots. The homogeneity of the label assignments can be used as a quantity to

detect if a point is on the boundary or in the interior of a cluster and may serve as an

uncertainty quantification of clustering. We will pursue this in the future.

• Anomaly and noise detection. As illustrated in Appendix E, E, and E, the single

linkage criterion in our Skeleton clustering framework may detect noisy observations

in the data. This suggests the possibility of using our approach for noises or anomalies

similar to the DBSCAN (Campello et al., 2015; Ester et al., 1996). We will explore

this direction in the future.
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Chapter 3

Skeleton Regression: A Graph-Based

Approach to Estimation on Manifold

3.1 Introduction

Many data nowadays are geometrically structured that the covariates lie around a

low dimensional manifold embedded inside a large-dimensional vector space. Among many

geometric data analysis tasks, the estimation of functions defined on manifolds has been

extensively studied in the statistical literature. A classical approach to explicitly account

for geometric structure takes two steps: map the data to the tangent plane or some em-

bedding space and then run regression methods with the transformed data. This approach

is pioneered by the Principle Component Regression (PCR) (Massy, 1965) and the Partial

Least Squares (PLS) (Wold, 1975). Aswani et al. (2011) innovatively relate the regression

coefficients to exterior derivatives. They propose to learn the manifold structure through
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local principal components and then constrain the regression to lie close to the manifold by

solving a weighted least-squares problem with Ridge regularization. Cheng and Wu (2013)

present the Manifold Adaptive Local Linear Estimator for the Regression (MALLER) that

performs the local linear regression (LLR) on a tangent plane estimate. However, because

those methods directly exploits the local manifold structures in an exact sense, they are

not robust to variations in the covariates that perturbs them away from the true manifold

structure.

Many other manifold estimation approaches exist in the statistical literature. Guhaniyogi

and Dunson (2016) utilize random compression of the feature vector in combination with

Gaussian process regression. Zhang et al. (2013) follow a divide-and-conquer approach

that computes an independent kernel Ridge regression estimator for each randomly parti-

tioned subsets. Other nonparametric regression approaches such as kernel machine learning

(Schölkopf and Smola, 2002), manifold regularization (Belkin et al., 2006b), and the spectral

series approach (Lee and Izbicki, 2016) also account for the manifold structure of the data.

However, those methods still suffer from the curse of dimensionality with large-dimensional

covariates.

In addition to data with manifold-based covariates, manifold learning has been applied to

other types of manifold-related data. Marzio et al. (2014) develop nonparametric smoothing

for regression when both the predictor and the response variables are defined on a sphere.

Zhang et al. (2019) deal with the presence of grossly corrupted manifold-valued responses.

Green et al. (2021) proposes the Principal Components Regression with Laplacian-Eigenmaps

(PCR-LE) that projects responses onto the eigenvectors output by Laplacian Eigenmaps. Lin

and Yao (2020) address data with functional predictors that reside on a finite-dimensional
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manifold with contamination. In this work, we focus on manifold-based covariates and may

incorporate other types of manifold-related data in the future.

The main goal of this work is to estimate scalar responses on manifold-structured covari-

ates in a way that bypasses the curse of dimensionality, and we achieve this by proposing a

new framework that utilizes graphs and nonparametric regression techniques. Our framework

follows the two-step idea: first, we learn a graph representation, which we call the skeleton,

of the manifold structure based on the methods from Wei and Chen (2021) and project the

covariates onto the skeleton. Then we apply different nonparametric regression methods to

the skeleton-projected data. We give brief descriptions about the relevant nonparametric

regression methods below. Kernel smoothing is a widely used technique that estimates the

regression function as locally weighted averages with the kernel as the weighting function.

Pioneered by Nadaraya (1964) and Watson (1964) with the famous Nadaraya–Watson es-

timator, this technique has been widely used and extended by recent works (Fan and Fan

(1992), Hastie and Loader (1993), Fan et al. (1996), Kpotufe and Verma (2017)). Splines

(Hastie et al. (2009), Friedman (1991)) are popular nonparametric regression constructs that

take the derivative-based measure of smoothness into account when fitting a regression func-

tion. Moreover, k-Nearest-Neighbors (kNN) regression (Altman, 1992; Hastie et al., 2009)

has a simple form but is powerful and widely used in many applications. We incorporate

these techniques mentioned above in our regression framework.

In recent years, many nonparametric regressors were shown to be adaptive to the man-

ifold structure that they converge at rates that depend only on the intrinsic dimensions of

data space. Particularly, the kNN regressor and the kernel regressor are both proved to be

manifold adaptive with the proper parameter tuning procedures (Kpotufe, 2009a,b, 2011;
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(a) Data (b) Knots (c) Skeleton

(d) S-Kernel Regression (e) Linear Spline

Figure 3.1: Skeleton Regression illustrated by Two Moon Data (d=2).

Kpotufe and Garg, 2013; Kpotufe and Verma, 2017). The regression framework proposed in

this work also adapts to the manifold that the nonparametric regression models, fitted on

a graph, are dimension-independent. Our framework has additional advantages that predic-

tors from distinct manifolds can be accounted for and is robust to additive noise and noisy

observations.

Outline. We start with section 3.2 by presenting the brief procedures of the skeleton

regression framework. In section 3.3, we describe the construction of the skeleton. In section

3.4, we apply kernel regression with the geodesic distances on the skeleton. In section 3.5, we

fit linear spline on the skeleton structure. In section 3.6, we present some simulation results

for skeleton regression and demonstrate the effectiveness of our method on real datasets in

Section 3.7. In section 3.8, we conclude the paper and points some directions for future
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research.

3.2 Skeleton Regression Framework

We introduce the skeleton regression framework in this section. Given random independent

samples (X1, Y1), . . . , (Xn, Yn), with Xj ∈ X ⊆ Rd the covariates and Yj ∈ R the response for

j = 1, . . . , n, a traditional regression approach is to estimate the regression function m(x) =

E(y|X = x). However, the ambient dimension d can be large while the covariates have a

low-dimensional manifold structure, X can be the union of several disjoint components with

different manifold structures, and the regression function can have discontinuous changes

from one component to another. To accommodate for such manifold structured data, we

approach the regression task by first representing the sample covariate space with a graph,

which we call the skeleton, that summarizes the manifold structures. We then focus instead

on the regression function over the skeleton graph which incorporates the covariates geometry

in a dimension-independent way.

In this work, we use the methods in Wei and Chen (2021) to construct the skeleton,

but it has the potential to be constructed with other approaches and tuned with subject

matter knowledge. We illustrate our regression framework on simulated TwoMoon data in

Figure 3.1. The covariates of the TwoMoon data consist of two 2-dimensional clumps with

intrinsically 1-dimensional curve structure, and the regression response increases polynomi-

ally with the angle and the radius (Figure 3.1 (a)). We construct the skeleton presentation

to summarize the geometric structure (Figure 3.1 (b,c) ) and project the covariates onto the

skeleton. The regression function on the skeleton is estimated using kernel regression (Sec-
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tion 3.4, illustrated in Figure 3.1 d), and linear spline (Section 3.5, illustrated in Figure 3.1

e). The estimated regression function can predict new projected data points. The procedure

is summarized in Algorithm 2.

Algorithm 2 Skeleton Regression

Input: Observations (x1, Y1), . . . , (xn, Yn).
1. Skeleton Construction. Construct a skeleton representation of the covariates using
method in Section 3.3. Knots and edges can be tuned with subject knowledge.
2. Data Projection. Project the covariates onto the skeleton structure.
3. Skeleton Regression Function Estimation. Fitting regression function on the
skeleton using kernel regression (Section 3.4) and linear spline (Section 3.5).
4. Prediction. Project the new data puts onto the learnt skeleton structure and use the
estimated regression function for prediction.

3.3 Skeleton Construction

3.3.1 Knots and Edges

For given covariate space X ⊆ Rd, we construct a skeleton graph with k knots V =

{Vj ∈ Rd : j = 1, . . . k} and the set of connected edges E = {tVj + (1 − t)Vℓ : t ∈

(0, 1), Vj connected to Vℓ}. For the parametrization, we have t ∈ (0, 1) to exclude the knots.

Notably, the knots and edges in our framework, different from the usual graphs, have physical

locations in the ambient space. We denote the skeleton as S = V ∪ E .

The skeleton graph is constructed to give an approximate representation of the data

structure and many existing prototype-based methods can be used for this purpose. In this

work, we follow an approach in Wei and Chen (2021) to construct the skeleton and give a

brief description below for comprehensiveness. The method constructs knots as the centers
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Figure 3.2: Left: Orange shaded area illustrates the 2-NN region of knots 1, 2. Right: Shaded
areas illustrate the 2-NN region of knots 6, 7 and knots 2, 8.

from the k-means clustering with a large number of k 1. The edges are connected according

to the sample 2-Nearest-Neighbor (2-NN) region of a pair of knots (Vj, Vℓ) (see Figure 3.2)

Bjℓ = {Xm,m = 1, . . . , n : ∥x− Vi∥ > max{∥x− Vj∥ , ∥x− Vℓ∥},∀i ̸= j, ℓ}. (3.1)

where ||.|| denotes the Euclidean norm, and an edge between Vj and Vℓ is added if Bjℓ is non-

empty. Provided the desired number of disconnected components, the method can further

segment the skeleton by using hierarchical clustering with respect to the Voronoi Density

weights defined as SV D
jℓ =

1
n |Bjℓ|
∥Vj−Vℓ∥

.

Remark 5. The idea of using the k-means algorithm to divide data into cells for fast com-

putation has been applied in many machine learning realms. Sivic and Zisserman (2003),

when carrying out an approximate nearest neighbor search, proposed to divide the data into

Voronoi cells by k-means and do a neighbor search only in the same or some nearby cells.

Babenko and Lempitsky (2012) adopted the Product Quantization technique to construct cell

centers for high-dimensional data as the Cartesian product of centers from sub-dimensions.

k-means algorithm can be slow for large-scale data, but Johnson et al. (2019) has imple-

1By default [
√
n]. We explore the effect of choosing different numbers of knots with empirical results.
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mented the k-means algorithm efficiently on the GPU base, which dramatically improves

the calculation speed of the algorithm.

3.3.2 Skeleton-Based Distance

A feature of the physically-located skeleton is that we can easily define a skeleton-based

distance function dS(., .) : S ×S → R+∪{∞}. Let Sj, sℓ ∈ S be two arbitrary points on the

skeleton and note that, different from usually geodesic distance on a graph, in our framework

Sj, sℓ can be on the edges. We measure the skeleton-based distance between two skeleton

points as the graph path length as defined below (See Figure 3.3 for an example):

• If Sj, sℓ are disconnected that they belong to two disjoint components of S, we define

d(Sj, sℓ) = ∞.

• If Sj and sℓ are on the same edge, we define the skeleton distance as their Euclidean

distance that

dS(Sj, sℓ) = ||Sj − sℓ|| (3.2)

• For Sj and sℓ on two different edges that share a knot V0, the skeleton distance is

defined as

dS(Sj, sℓ) = ||Sj − V0||+ ||sℓ − V0|| (3.3)

• Otherwise, let knots Vi(1), . . . , Vi(m) be the vertices on the shortest path connecting

Sj, sℓ, where Vi(1) is one of the two closest knots of Sj and Vi(m) is the other closest

knots of sℓ. We add the edge lengths of the in-between knots to the distance that

dS(Sj, sℓ) = ||Sj − Vi(1)||+ ||sℓ − Vi(m)||+
m−1∑
p=1

∥∥Vi(p), Vi(p+1)

∥∥ (3.4)

Remark 6. We may view the geodesic distance on the skeleton as an estimate of the geodesic
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Figure 3.3: Illustration of skeleton-based distance. Let C1, C2, C3, C4 be the knots, and let S2, S3, S4

be the mid-point on the edges E12, E23, E34 respectively. Let S1 bet the midpoint between C1 and
S2 on the edge. Let dij = ∥Ci − Cj∥ denotes the length of the edge Eij . dS(S1, S2) = 1

4d12
illustrated by the blue path (m = 0 case). dS(S2, S3) =

1
2d12 +

1
2d23 illustrated by the green path

(m = 1 case). dS(S2, S4) =
1
2d12 + d23 +

1
2d34 illustrated by the orange path (m = 2 case).

distance on the underlying data manifold. Moreover, to make a stronger connection to

the manifold structure, it is possible to define edge distances by local manifold learning

techniques that have better approximations to local manifold structure. However, using

more complex local edge weights can pose issues for the data projection step described in

the next section and we leave this as a future direction.

3.3.3 Data Projection

For the next step, we project the sample covariates onto the constructed skeleton. For

given covariate x, let I1(x) ∈ {1, . . . , k} be the index of its closest knots in terms of Euclidean

metric on X and similarly let I2(x) ∈ {1, . . . , k} be the index of its second closest knot. We

define the projection function Π(.) : X → S for x as (illustrated in Figure 3.4):

• If VI1(x) and VI2(x) are not connected, x is projected onto the closest knot that Π(x) =

VI1(x)

• If VI1(x) and VI2(x) are connected, x is projected with the Euclidean metric onto the line

passing through VI1(x) and VI2(x) that, let t =
(x−VI1(x))

T
·(VI2(x)−VI1(x))

∥VI2(x)−VI1(x)∥2 be the projection
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proportion,

Π(x) = VI1(x) +
(
VI2(x) − VI1(x)

)
·



0, if t < 0

1, if t > 0

t, otherwise

where we constrain that the covariates to be projected onto the closest edge.

Figure 3.4: Illustration of projection to the skeleton. The skeleton structure is given by the black
dots and lines. Data point X1 is projected to S1 on the edge between C1 and C2. Data point X2

is projected to knot C2.

3.4 Skeleton Kernel Regression

In this section, we apply kernel smoothing to the skeleton-projected covariates based on

the skeleton-based distances. Instead of estimating the regression function defined on X , we

estimate the projected regression function

mS(s) = E(y|π(x) = s), s ∈ S (3.5)

on the skeleton domain S. Let Kh(.) = K(./h) be a non-negative kernel function with

bandwidth h > 0 and let s1, . . . , sn denote the skeleton-projected covariates that si = Π(xi)

for i = 1, . . . , n, the corresponding skeleton-based kernel (S-kernel) regressor for a point
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s ∈ S is

m̂(s) =

∑N
j=1Kh(dS(Sj, s))Yj∑N
j=1Kh(dS(Sj, s))

(3.6)

An example kernel function is the Gaussian kernel that

Kh(dS(Sj, sℓ)) = exp

(
− dS(Sj, sℓ)

2

h2

)
(3.7)

Notably, the kernel function calculation only depends on the skeleton distances and hence is

independent of neither the ambient dimension of the original input nor the intrinsic dimension

of the manifold structure. The smoothing bandwidth h can be chosen by cross-validation.

3.4.1 Consistency of S-Kernel Regressor

In this section, we present the convergence result of the presented S-kernel regressor. We

assume the skeleton is fixed and given and focus on the regression function estimation step.

To assess the estimation error, we need to analyze the distribution on the skeleton. However,

due to the covariate projection procedure, the probability measures on the knots and edges

are different, and hence we treat them separately. On an edge, the domain of the projected

regression function varies 1-dimensionally and the estimation becomes a classical univariate

problem. In particular, we impose the one-dimensional Lebesgue measure with respect to

the parametrization t as in the definition of E , and the true projected regression model for

a point s on edge (Vj, Vℓ) is

mS(s) = mjℓ(s) = mjℓ(t)

where t is the parametrization for s. Differently, a whole region of the covariate space can be

projected onto a knot, leading to nontrivial probability mass at the point. Hence, we assign

discrete counting measure on each knot, and the true projected regression model at s ∈ V
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is a constant function

mS(s) = Mj, s = Vj.

For simplicity, we write Kh(Sj, sℓ) ≡ Kh(dS(Sj, sℓ)) for Sj, sℓ ∈ S. Let B(s, hn) ⊂ S

be the support for the kernel function Kh(.) at point s ∈ S with bandwidth hn. We can

decompose the kernel regression estimator into edge parts and knot parts as

m̂(s) =

∑n
j=1 YjKh(Sj, s)∑n
j=1Kh(Sj, s)

=
1
n

∑n
j=1 YjKh(Sj, s)I(Sj ∈ E) + 1

n

∑n
j=1 YjKh(Sj, s)I(Sj ∈ V)

1
n

∑n
j=1Kh(Sj, s)I(Sj ∈ E) + 1

n

∑n
j=1Kh(Sj, s)I(Sj ∈ V)

=
1
n

∑n
j=1 YjKh(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 YjKh(Sj, s)I(Sj ∈ V ∩ B(s, hn))

1
n

∑n
j=1Kh(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1Kh(Sj, s)I(Sj ∈ V ∩ B(s, hn))

(3.8)

In the last line, we stress that the knots and edges in the kernel estimator only make meaning-

ful contribution within the support of the kernel function. We inspect the different domain

cases separately in the following sections.

For the model and assumptions, we let Yj = Uj + mS(Sj),Sj ∈ S, and E(Uj|Xj) = 0

almost surely. Let σ2(s) = E(|Uj|2|Sj = s). We assume

A1 σ2(s) is continuous and uniformly bounded.

A2 The density function for edge point g(s) > 0 and are bounded and Lipschitz continuous.

A3 mS(s)g(s) is bounded and Lipschitz continuous.

A4 The kernel function has compact support and satisfies
∫
K(x)dx = 1,

∫
|K(x)| dx < ∞,∫

xK(x)dx = 0,
∫
|x|K(x)dx < ∞,

∫
K2(x)dx < ∞, and

∫
x2K(x)dx < ∞

Conditions A1 and A4 are general and are commonly assumed for kernel regression. For the

smoothness conditions A2 and A3, instead of having the second-order smoothness condition

that is usually assumed for kernel regression analysis, we here only have Lipschitz continuity.
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We do not assume higher-order derivative smoothness because odd-degree derivatives require

specifying directions on the graph, which can lead to model formulation issues. We leave

discussions on higher-order splines as future work.

Convergence of the Edge Point

We first look at an edge point s ∈ Ejℓ ∈ E . In this case, as n → ∞, hn → 0, for sufficiently

large n, we have B(s, hn) ⊂ Ejℓ, and the skeleton distance is the 1-dimensional Euclidean

distance for any point within the support. Therefore, we have the convergence rate similar to

the 1-dimensional kernel regression estimator (Bierens, 1983; Wasserman, 2006; Chen et al.,

2017).

Theorem 3 (Consistency on Edge Points). For s ∈ E an edge point, assume conditions (A1-4)

hold for all points in E ∩ B(s, hn), as n → ∞, hn → 0, nhn → ∞,

|m̂n(s)−mS(s)| = O(hn) +Op

(√
1

nhn

)
(3.9)

We leave the proof in Appendix J.

Convergence of the Knots with Nonzero Mass

We then look at the knots with nonzero probability mass that s ∈ V with p(s) > 0, where

we use p(s) to denote the probability mass on a knot. This case mainly occurs for degree

1 knots on the skeleton graph where a non-trivial region of points are projected onto such

knots. For example see knot C2 in Figure 3.4.
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Theorem 4 (Consistency on Knots with Nonzero Mass). For s ∈ V a knot point, assume

conditions (A1-4) hold for all points in E ∩ B(s, hn) and let the discrete probability mass at

s be p(s) > 0. We have, as n → ∞, hn → 0, and nhn → ∞,

|m̂(s)−mS(s)| = O(hn) +Op

(√
1

n

)
(3.10)

Note that for the stochastic variation part, instead of having the usual Op

(√
1

nhn

)
rate,

we have Op

(√
1
n

)
rate which comes from the observations projected onto the knots. The

detailed proof is provided in Appendix J.

Convergence of the Knots with Zero Mass

We now look at a knot point s ∈ V with no probability mass that p(s) = 0. This is

the case for knots with a degree larger than 1 like knot C3 in Figure 3.4. Since we define

edge sets excluding the knots, there will be no density as well as no probability mass at

s. Note that, with some reformulation, degree 2 knots can be parametrized together with

the two connected edges and under the appropriate assumptions Theorem 3 applies, giving

consistency estimation with O(hn) +Op

(√
1

nhn

)
rate. However, density cannot be extended

directly to knots with a degree larger than 2, but the kernel estimator still converges to some

limits as presented in the Proposition below.

Proposition 5. For s ∈ V a knot point, assume conditions (A1-4) hold for all points in

E ∩ B(s, hn) and let the discrete probability mass at s be p(s) = 0. Let I collect the

indexes of edges with one knot being s. For ℓ ∈ I and edge Eℓ connects s and Vℓ, let

gℓ(t) = g((1 − t)s + tVℓ) and gℓ(0) = limx↓0 gℓ(x). Let mℓ(t) = mS((1 − t)s + tVℓ) and
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mℓ(0) = limt↓0mℓ(t). We have, as n → ∞, hn → 0, and nhn → ∞,

m̂(s) =

∑
ℓ∈I mℓ(0)gℓ(0)∑

ℓ∈I gℓ(0)
+O(hn) +Op

(√
1

nhn

)
Remark 7. The domain of the regression function S can be seen as bounded, and hence the

boundary bias issue can arise. However, the boundary of the skeleton is the set of degree 1

knots, and, under our formulation, knots have discrete measures so we don’t need to consider

boundary bias. Also, the boundary of the true manifold structure can be different from the

boundary of the skeleton graph, which makes the boundary consideration more complicated.

3.5 Linear Spline Regression on Graph

In this section, we propose to fit a skeleton-based linear spline model (S-Lspline) for

regression estimation. We construct a linear model on each edge of the graph while requiring

the predicted values to agree on shared vertices and consequently getting a continuous model

on the graph. For the fitting process, notably, two points can determine a line, and hence

the linear model on each edge is determined by the values on the two connected vertices.

Specifically, a linear function f(t) = α + βt parametrized by (α, β) is equivalent to f(t) =

f(0) + (f(1)− f(0))t parametrized by f(0) = α and f(1) = α+ β. Also, fitting exactly one

value to each knot ensures the continuity at the knots as required by the linear spline model.

As a result, the linear spline model is parameterized by the values on each knot.

With the values-on-knots parametrization, we can fit the S-Lspline model through ordi-

nary least squares with a graph-transformed n×v covariate matrix Z = (z1, . . . ,zn)
T where

v = |V| is the number of knots and zj is the length v transformed data vector for xj ∈ X .

The covariates are transformed in the following way:
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1. If xi is projected onto a vertex that si = Vj for some j, then

zij = 1, zij′ = 0

for j′ ̸= j.

2. If xi is projected onto an edge between knots Vj and Vℓ, then

zij =
||si − Vj||
||Vj − Vℓ||

, ziℓ =
||si − Vℓ||
||Vj − Vℓ||

, zij′ = 0

for j′ ̸= j, ℓ.

Let ŷ be the length v vector of predicted values on all the knots. If xi is projected onto a

vertex that si = Vj for some j, the linear model with transformed covariates gives zT
i ŷ = ŷj,

the predicted value on vertex Vj. If xi is projected onto an edge between knots Vj and Vℓ,

let ŷj and ŷℓ be the corresponding predicted values at Vj and Vℓ, and the linear interpolation

between ŷℓ and ŷj at si can be written as

ŷj +
||si − Vj||
||Vj − Vℓ||

· (ŷℓ − ŷj) =
||si − Vℓ||
||Vj − Vℓ||

· ŷj +
||si − Vj||
||Vj − Vℓ||

· ŷℓ = zT
i ŷ (3.11)

Consequently, the S-Lspline model in matrix form can be written as

E(y|Z) = βTZ (3.12)

for β the v × 1 column vector of coefficients with each coefficient βj = ŷj representing the

predicted value on the corresponding knot. To estimate the parameter β, we use the least

square method, which leads to

β̂ = (ZTZ)−1Zy (3.13)

Note that the S-Lspline model with the graph-transformed covariates does not include an

intercept, which is different from the usual ordinary linear regression model.

Remark 8. An alternative way to validate the value-on-knots parameterization is via the
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calculation of the degree of freedom. On each graph, the sum of the vertex degrees is twice

the number of edges since each of the edges is counted from both ends. Let e be the number

of edges in the graph, let v be the number of vertices, and let r be the sum of all the vertex

degrees, we have r = 2e. For the S-Lspline model, we have 2 degrees of freedom to fit a linear

on each edge, and hence, without the constraints, the total number of degrees of freedom to

spare is 2e. Then for each vertex Vi with degree ri, the continuity constraint imposes ri − 1

equations, and consequently, the continuity constraints consume a total of
∑v

i=1 ri−1 = r−v

degrees of freedom. To put it together, we have 2e− (r − v) = v degrees of freedom, which

agrees with the degrees of freedom given by the parametrization of values on the knots.

Remark 9. One natural idea is to extend the linear spline model to a higher-order spline

on the skeleton. However, higher-order spline models may run into several issues. First, to

ensure the desired degree of smoothness on the skeleton graph, we may need polynomials

with degrees higher than that used in Euclidean case. Secondly, the odd-degree derivatives

are directional and hence are dependent on the directions of the edges, and different edge

directions can lead to different models on a graph. The discussions on higher-order splines

on graphs is beyond the scope of this paper and we leave it as future work.

3.6 Simulations

In this section, we use simulated data to study the empirical performance of the proposed

skeleton regression framework. We first show an example with the intrinsic domain composed

of several disconnected components that we call the Yinyang data (Section 3.6.1). Then we

add noisy observations to the Yinyang data (Section 3.6.2) to demonstrate the effectiveness of
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our method in coping with noisy points. Moreover, we present an example where the domain

is a continuous manifold with a Swiss roll shape (Section 3.6.3). For all the simulations

included in this section, there are random perturbations in the intrinsic dimensions, and we

add random Gaussian variables as covariates to make the ambient dimension large.

3.6.1 Yinyang Data

The covariate space of Yinyang data is intrinsically composed of 5 disjoint structures of

different geometric shapes and different sizes: a large ring of 2000 points, two clumps each

with 400 points (generated with the shapes.two.moon function with default parameters in

the clusterSim library in R (Walesiak and Dudek, 2020)), and two 2-dimensional Gaussian

clusters each with 200 points (Figure 3.6 left). Together there are a total of 3200 obser-

vations. Note that the intrinsic structures of the components are curves and points, and

with pertubations the generated covariates do not lay exactly on the corresponding manifold

structures. The responses are generated from a trigonometric function on the ring and con-

stant functions on the other structures with random Gaussian error(Figure 3.6 right). That

is, let ϵ ∼ N(0, 0.01) and let θ be the angle of the covariates, then

Y = ϵ+



sin(θ ∗ 4) + 1.5 for points on the outer ring

0 for points on the bottom-right Gaussian cluster

1 for points on the right clump

2 for points on the left clump

3 for points on the upper-left Gaussian cluster

(3.14)
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To make the task more challenging with the presence of noisy variables, we add independent

and identically distributed random N(0, 0.01) variables to the generated covariates. In this

section, we increase the dimension of the covariates to a total of 1000 with those added

Gaussian variables.

We randomly generate the dataset for 100 times, and on each dataset we use 5-fold

cross-validation to calculate the sum of squared errors (SSE) as the performance assessment.

For each fold, there are 2560 training samples. We use the skeleton construction method

described in Section 3.3.1 to construct skeletons with varying number of knots on each

training set. The construction procedure also cuts each skeleton into 5 disjoint components

according to the Voronoi Density weights (Section 3.3.1). We also empirically tested using

different cuts to get skeleton structures with different numbers of disjoint components under

the same number of knots and noticed little change in the squared error performance (see

Appendix K).

We evaluate the skeleton-based kernel regression (S-kernel) as proposed in Section 3.4

and the skeleton spline model(S-Lspline) with the proposed parametrization in Section 3.5.

For comparisons, we apply the classical k-Nearest-Neighbors regression in two ways: one

vanilla version based on Euclidean distances (kNN) and one skeleton-related version using

the skeleton-based distances (S-kNN). For penalization regression methods, we test Lasso and

Ridge regression. Among the recent manifold and local regression methods, we compare with

the Spectral Series approach with radial kernel (SpecSeries) for its superior performance and

readily available R implementation 2. We take the medium, 5 percentile, and 95 percentile

2https://projecteuclid.org/journals/supplementalcontent/10.1214/16-EJS1112/supzip_1.

zip
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of the 5-fold cross-validation SSEs across each parameter setting for each method on the 100

datasets, and report the smallest medium SSE for each method along with the corresponding

best parameter setting in Table 3.6.

We observed that all the skeleton-based methods (S-Kernel, S-kNN, and S-Lspline) all

demonstrate performance superior than the usual kNN in this setting. SpecSeries approach

performs worse than the classical kNN in this example while is only slightly better than the

Lasso regression. Ridge and Lasso regression, although with the penalization effect, give

relatively high SSE. Therefore, skeleton regression framework has advantage dealing with

covariates lying around manifold structures with noisy features.

In Figure 3.7, we present the medium SSE of the S-Lspline, S-Kernel, and S-kNN methods

on skeletons with different number of knots, with the vertical dashed line indicating [
√
n] = 51

knots as suggested by the empirical rule, where n is the training sample size. We see that the

empirical rule leads to satisfactory results in this simulation study, approximately identifying

the “elbow” position, but carrying out cross-validation for fine-tuning is advised in practice.

3.6.2 Noisy Yinyang Data

To show the robustness of the proposed skeleton-based regression methods, we add 800

noisy observations to the Yinyang data in Section 3.6.1 (20% of a total of 4000 observations).

The first two dimensions of the noisy covariates are uniformly sampled from the 2-dimensional

square [−3.5, 3.5]×[−3.5, 3.5] and independent random normalN(0, 0.01) variables are added

to make the covariates 1000-dimensional in total. The responses of the noisy points are set

as 1.5 + ϵ with ϵ ∼ N(0, 0.01), while the responses on the Yinyang covariates are generated
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Figure 3.6: Yinyang Regression Data

Method Medium SSE (5%, 95%) nknots Parameter

kNN 204.5 (192.3, 221.9) - neighbor=18
Ridge 2127.0 (2100.2, 2155.2) λ = 7.94
Lasso 1556.8 (1515.4, 1607.9) λ = 0.0126

SpecSeries 1506.4 (1469.1,1555.6) - bandwidth = 2
S-Kernel 112.8 (102.0, 121.7) 38 bandwidth = 6 rhns
S-kNN 139.6 (129.6,148.7) 38 neighbor = 36

S-Lspline 95.8 (88.6, 102.6) 38 -

Table 3.1: Regression results on Yinyang d = 1000 data. The smallest medium 5-fold cross-
validation SSE from each method is listed with the corresponding parameters used. The 5 percentile
and 95 percentile of the SSEs from the given parameter settings are reported in bracket.

Figure 3.7: Yinyang d = 1000 data regression results with varying number of knots. The medium
SSE across the 100 simulated datasets with each given parameter setting is plotted.
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the same as in Equation 3.14. The first two dimensions of the Noisy Yinyang covariates are

plotted in Figure 3.9 left and the Y values against the first two dimensions of the covariates

are illustrated in Figure 3.9 right.

We randomly generate the Noisy Yinyang data 100 times and follow the same analysis

procedure as in Section 3.6.1 except that we leave the skeleton that we fit our regression

estimators on to be a fully connected graph. Similarly, we take the medium, 5 percentile,

and 95 percentile of the 5-fold cross-validation SSEs across each parameter setting for each

method on the 100 datasets, and report the smallest medium SSE for each method along

with the corresponding best parameter setting in Table 3.2. We see that all the skeleton-

based regression methods outperform the usual kNN and the SpecSeries approach. Ridge

and Lasso regressions again fail to give good performance on this simulated dataset.

In Figure 3.7, we plot the medium SSE of the skeleton-based methods on skeletons with

different number of knots. Using the empirical rule to construct skeleton with [
√
3200] = 57

knots leads to good regression results and approximately identifies the “elbow” position

in Figure 3.7. However, using a number of knots larger than that given by the empirical

rule leads to better regression results for some skeleton-based methods. This improvement

relates to the phenomenon observed in Wei and Chen (2021) that, when noisy observations

are included, we need a skeleton with more knots and cut the skeleton into more disjoint

components to give a clean representation of the key manifold structures. Therefore, in

practice, when facing data with noisy feature vectors, empirically tuning the number of

knots favoring larger than [
√
n] values is advised.
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Figure 3.9: Noisy Yinyang Regression Data

Method Medium SSE (5%, 95%) Number of knots Parameter

kNN 440.8 (420.4, 463.0) - neighbor=18
Ridge 2139.1 (2102.6, 2171.1) - λ = 6.31
Lasso 2029.2 (1988.7, 2071.0) - λ = 0.02

SpecSeries 1532.0 (1490.7, 1563.2) - bandwidth = 2
S-Kernel 385.7 (365.2, 406.0) 57 bandwidth = 6 rhns
S-kNN 417.6 (396.1, 440.6) 71 neighbor = 36

S-Lspline 377.7 (358.1, 398.9) 71 -

Table 3.2: Regression results on Noisy Yinyang d = 1000 data.The smallest medium 5-fold cross-
validation SSE from each method is listed with the corresponding parameters used. The 5 percentile
and 95 percentile of the SSEs from the given parameter settings are reported in bracket.

Figure 3.10: Noisy Yinyang d = 1000 data regression results with varying number of knots. The
medium SSE across the 100 simulated datasets with each given parameter setting is plotted.
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3.6.3 SwissRoll Data

The intrinsic components of the covariates in Yinyang data are all well-separated, which,

admittedly, can give an advantage to skeleton-based methods. Moreover, the intrinsic di-

mensions of the structural components for Yinyang data covariates are all lower than or

equal to 1 and can be straightforwardly represented by knots and line segments, potentially

giving another advantage to skeleton-based methods. To address such concerns, we present

another simulated data which has covariates lying around a Swill Roll shape (Figure 3.12

left), an intrinsically 2-dimensional manifold in the 3-dimensional Euclidean space. To make

the density on the Swill Roll manifold balanced, we sample points inversely proportional

to the radius of the roll in the X1X3 plane. Specifically, let u1, u2 be independent random

variables from Uniform(0, 1) and let the angle in the X1X3 plane be generated as θ13 = π3u1 .

Then for the first 3 dimensions of the covariates we have

X1 = θ13 cos(θ13), X2 = 4u2, X3 = θ13 sin(θ13)

The true response has a polynomial relationship with the angle on the manifold if the X2

value of the point is within some range. Let θ̃13 = θ13 − 2π, and let ϵ ∼ N(0, 0.3). Then we

set

Y = 0.1× θ̃313 × [I(X2 < π) + I(2π < X2 < 3π)] + ϵ

The response versus the angle θ13 and X2 is demonstrated in Figure 3.12 right. Independent

random Gaussian variables from N(0, 0.1) are added to make the covariates 1000-dimensional

in total, and 2000 observations are sampled to make the Swiss Roll dataset.

We randomly generate the data 100 times and use the same analysis procedures as in

Section 3.6.1. Similarly, we take the medium, 5 percentile, and 95 percentile of the 5-fold
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Figure 3.12: SwissRoll Regression Data

Method Medium SSE (5%, 95%) nknots Parameter

kNN 648.5 (607.1, 696.0) - neighbor=12
Ridge 1513.7 (1394.4, 1616.2) - λ = 2.0
Lasso 1191.4 (1106.7, 1260.7) - λ = 0.032

SpecSeries 1166.5 (1081.4, 1238.8) - bandwidth = 2.0
S-Kernel 588.7 (527.0, 653.7) 70 bandwidth = 4 rhns
S-kNN 614.7 (561.2, 692.6) 70 neighbor = 27

S-Lspline 578.6 (508.0, 629.6) 60 -

Table 3.3: Regression results on SwissRoll d = 1000 data. The smallest medium 5-fold cross-
validation SSE from each method is listed with the corresponding parameters used. The 5 percentile
and 95 percentile of the SSEs from the given parameter settings are reported in bracket.

Figure 3.13: SwissRoll d = 1000 data regression results with varying number of knots. The medium
SSE across the 100 simulated datasets with each given parameter setting is plotted.
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cross-validation SSEs across each parameter setting for each method on the 100 datasets,

and report the smallest medium SSE for each method along with the corresponding best

parameter setting in Table 3.3. All the proposed skeleton-based methods have performance

better than the usual kNN regressor, while the S-Lspline method gives the best performance

in terms of SSE. The SpecSeries approach in this setting has performance similar to the Lasso

regression and fails to improve much of the regression result utilizing information about the

underlying manifold structure, potentially due to the large number of noisy dimensions.

Therefore, the proposed skeleton regression framework can also be powerful for data on

connected, multidimensional manifolds.

By plotting the medium SSE under skeletons with a varying number of knots, we note

that the best performances for all the skeleton-based methods are achieved with the number

of knots larger than [
√
1600] = 40 knots. Considering the intrinsic structure of the Swiss Roll

input space to be a 2D plane, more knots on the plane can give a better representation of the

data structure and hence leading to better prediction accuracy. We conjecture that the best

number of knots should depend on the intrinsic dimension of the covariates and we leave

the detailed discussion on this as future work, while empirically deploying cross-validation

to choose the number of knots is recommended.

3.7 Real Data

In this section, we present analysis results on two real datasets. We first predict the

rotation angles of an object in a sequence of images taken from different angles (Section

3.7.1). For the second example, we study the galaxy sample from the Sloan Digital Sky
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Figure 3.15: A part of the lucky cat images from the COIL-20 processed dataset. Each image is of
size 128 pixels.

Method SSE Parameter

kNN 888.9 neighbor=9
Ridge - -
Lasso - -

SpecSeries - -
S-Kernel 1205.9 bandwidth = 4rhns
S-kNN 2604.2 enighbor = 6

S-Lspline 338.1 -

Table 3.4: Regression results on LuckyCat data from COIL-20. The best SSE from each method
is listed with the corresponding parameters used.

Survey (SDSS) to predict the spectroscopic redshift (Section 3.7.2), a measure of distance

from a galaxy to earth.

3.7.1 Lucky Cat Data

This dataset consists of 72 gray-scale images of size 128×128 pixels taken from the COIL-

20 processed dataset (Nene et al., 1996). They are 2D projections of a 3D lucky cat obtained

through rotating the object by 72 equispaced angles on a single axis. Several examples of

the images are given in Figure 3.15. The response is the angle of rotation. However, this

response has the circular response issue that degree 0 is the same as degree 360. To avoid

this issue, we remove the last 8 images from the sequence and only use the first 64 images.

Hence, our dataset consists of 64 samples of a 1-dimensional manifold embedded in R16384
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along with scalar values representing the angle of rotation.

To assess the performance of each method, we use leave-one-out cross-validation. Similar

to the simulation studies, we use the skeleton construction method with Voronoi weights in

Wei and Chen (2021) to construct the skeleton on the training set. In practice, we observe

that a small number of knots can still lead to loops in the constructed skeleton structure, and

with some tuning, we fit 2[
√
n] = 16 knots to each training set. Also, with the knowledge that

the underlying manifold should be one connected structure, we do not cut the constructed

skeleton structure in this experiment. Ridge regression, Lasso regression, and Spectral Series

approach fail to run on this high-dimensional data with the implementations in R. The best

SSE from each method is listed in Table 3.4 along with the corresponding parameters. We

see that the S-Lspline method gives outstanding performance on this real data, significantly

outperforming the kNN regressor.

3.7.2 SDSS Data

In this section, we apply the proposed methods to a size 5000 galaxy sample, which is

a random subsample from the Sloan Digital Sky Survey (SDSS). This data has 5 covari-

ates measuring apparent magnitudes of stars from images taken using 5 photometric filters.

These 5 covariates can be understood as the color of a galaxy and they are inexpensive mea-

surements. The response is the spectroscopic redshift, which is an expansive measurement

of the actual distance from a galaxy to the earth.

We construct the skeleton with the method in Wei and Chen (2021) and fit the S-Lspline

model which gives the predicted values on each knot. We color the knots by their predicted
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(a) S-Lspline (b) True Value

Figure 3.17: SDSS Skeleton Colored by values predicted by S-Lspline (left) and by true values
(right).

Method SSE Parameter

kNN 67.8 neighbor=12
Ridge 870.3 λ = 0.001
Lasso 882.7 λ = 0.001

SpecSeries 66.6 bandwidth = 2
S-Kernel 90.6 bandwidth = 10rhns
S-kNN 95.8 neighbor = 39

S-Lspline 89.6 -

Table 3.5: Regression results on SDSS data. The best SSE from each method is listed with the
corresponding parameters used.

redshift values and color the edges by the average predicted values of the two connected

knots. The resulting skeleton graph is shown in Figure 3.17 left. To compare to the true

values, we also color the knots by the average responses within the corresponding Voronoi

cells and color the edges by the average responses within the 2-Nearest-Neighbor regions

(Figure 3.17 right).

The predictions given by S-Lspline are very close to the true values. Additionally, our
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method provides the advantage to see the underlying nearly 1-dimensional structural trend

of the real data, which can provide more intuition for practitioners.

We also carry out the same analysis procedure as the simulation studies in Section 3.6

comparing the 5-fold cross-validation SSE of different regression methods on this dataset.

Although the proposed skeleton-based methods do not have superior performance on this

dataset, the skeleton representation illustrates the hidden manifold structure in the covariate

space and the corresponding regression function. The 1-dimensional structure recovered from

the skeleton explains reveals that the data lay on a 1-dimensional manifold and the regression

function gradually increases along the manifold. Therefore, nonparametric methods such as

kNN and SpecSeries that can adapt to the intrinsic manifold will work well in this case.

3.8 Conclusion

In this work, we introduce the skeleton regression framework to handle regression problems

with manifold-structured inputs. We generalize the nonparametric regression techniques such

as k-Nearest-Neighbors and splines onto graphs. Our methods provide accurate and reliable

prediction performance and are capable of recovering the underlying manifold structure of

the data. Both theoretical and empirical analyses are provided to illustrate the effectiveness

of the skeleton regression procedures.

In what follows, we describe some possible future directions:

• Generalizing Skeleton Graphs to Simplicial Sets

In geometry perspective, the skeleton graph constructed in this work only concerns

about 0-simplices (points) and 1-simplices (line segments), while additional geometric
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information can be encoded in higher-dimensional simplices. Some interesting works

in deep learning have incorporated simplicial complexes for clustering and segmenta-

tion tasks (Bronstein et al., 2017; Bodnar et al., 2021). For future direction, it can

be interesting to generalize the framework in this work to use simplicial sets, which

naturally are higher-dimensional generalizations of directed graphs.

• Other nonparametric smoothers on graphs

There are some existing works that apply nonparametric regression estimators to

graphs. Particularly, Wang et al. (2016) has generalized the idea of trend filtering

Kim et al. (2009); Tibshirani (2014) to graphs and compared it to Laplacian smooth-

ing and Wavelet smoothing. Compared to our work, those regression estimators on

graphs apply to data whose inputs and responses are all on the vertices of a given

graph. Therefore, those graph smoothers, with different regularizations, only fit values

on the vertices without modeling the regression function on the edges (although in

Wang et al. (2016) linear interpolation is used to draw some plots).

Although the problem setup is different, one may construct responses on the knots

in the skeleton graph as the mean values of the corresponding Voronoi cell or the

k-Nearest-Neighbors average, and then use graph smoothers to fit the values on the

knots. Linear interpolation can again be used to predict the response at points on the

edge, and this can make a direct comparison to the skeleton-based linear spline method

introduced in this work.

• Time-varying covariates and responses

Another possible direction is to apply the skeleton regression framework to time-varying

covariates and responses. Particularly, covariates across time can be utilized together
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to construct knots in a skeleton representing data across time. The edges in the skeleton

are allowed to change according to the covariate distribution at different times, which

illustrate how the covariate distributions have changed. Also, we can represent the

regression function on the skeleton, so it is easy to illustrate how the regression function

changes.

• Streaming data and online skeleton update. Steaming data problem is becoming

more and more prevalent these days. So one future direction is to study how to update

the skeleton structure and its regression function in an online fashion. Reconstructing

the entire skeleton could be computationally expansive but performing a local update

on edge/knot editing is cheap. We will study how to design a simple and reliable

skeleton update method in the future.
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Chapter 4

Assessing Epidemic Models under

Missingness in Contact Network

4.1 Introduction

graph is a structure of connections, which make it natural to represent various networks, with

contact network being one example. Due to the advancement in mobile communication tech-

nology, collection of contact network data, at least some proxies for it, becomes feasible, and

studies have directly incorporated such data to model epidemic behaviors. Some early works

collect mobility data based on phone call and text records to model disease transmission

behaviors (Wesolowski et al., 2012; Bengtsson et al., 2015; Engebretsen et al., 2020; Milu-

sheva, 2020). Mobility networks derived from commute flows data are also used as proxy to

contact network for epidemic modeling (Fajgelbaum et al., 2021; Alsing et al., 2020). Facing

the challenge of the global pandemic, the Google COVID-19 Aggregated Mobility Research
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Dataset becomes a major source to drive research in epidemic modeling (Kapoor et al., 2020;

Ruktanonchai et al., 2020; Venkatramanan et al., 2021).

Despite the importance of contact data in modeling epidemic behavior, collecting contact

networks is still difficult, and, as described above, research teams use proxies for contact

networks, with mismeasurements inevitable. Chandrasekhar et al. (2021) demonstrates that

small misalignment of the model with the underlying network of interactions necessitates

non-trivial failure of local targeting policy guided by epidemiological models. Changes in

contact network has substantial implications disease transmissions, which raises concern over

the robustness of epidemic models in this regard. To address one aspect of this concern, we

assess the sensitivity of mathematical models, in terms of policy decisions, to missingness

about the underlying contact graph.

4.2 Non-Robustness to Missingness

In this section, we formulate the contact network missingness problem mathematically and

present some preliminary results.

4.2.1 Problem Setup

Real-world contact patterns tend to have high clustering, geographic locality, some

measure of sparsity, and some shortcuts or idiosyncratic long-range links (Banerjee et al.,

2013; Harris et al., 2019). Previously used statistical models in the study of social networks

such as latent space models, geography with idiosyncratic links, small-worlds networks such

as lattices with idiosyncratic rewiring all have these features (Watts and Strogatz, 1998;
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Hoff et al., 2002; Penrose, 2003; Jackson, 2008). To capture this, we study a sequence

of undirected, unweighted contact networks Gn on vertex set Vn indexed by population

|Vn| = n, constructed as follows. Let Ln be a sequence of graphs modeling local neighborhood

connections. Let En be a sequence of Erdos-Renyi random graphs with link probability βn.

Then the overall contact network can be set as Gn := Ln ∪ En.

We look at a disease process that originates with seed i0 at time t = 0 and propagates

through Gn as follows. In every period t ∈ N, every node that is presently infected infects

each of its neighbors independently with identical probability p. That is, for an infected

node i, there is a probability p that i infects a neighbor j, independently for all neighbors of

i. An infected node recovers the following period. The process is SIS so a recovered node is

susceptible once again. The infection status of node i at time t is given by yit ∈ {0, 1}.

The researcher’s goal is to estimate the α-risk set of individuals who have infection

probability larger than a threshold α that, for α ∈ (0, 1),

Qα (T ;Gn) = {j : Pr (yjT = 1 | i0, Gn) ≥ α} .

However, the researcher observes Ĝn rather than the true graph Gn. We assume Ĝ = L and

use them interchangeably depending on context. And the researcher can only identify

Qα

(
T ; Ĝn

)
=
{
j : Pr

(
yjT = 1 | i0, Ĝn

)
≥ α

}
.

where for the estimation we assume the researcher knows about the true p as, for this work,

we focus on the impact of missingness in the contact network. However, to separate out

the effect of missingness alone and to focus on the impact of missingness on transmission

process, we assume a diminishing number of missing links. Let dH,j denote the degree of

node j in some graph H.
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Assumption 1. The share of links in Gn coming from En tends to zero that

nβn = o (E (dL,j)) .

Since the epidemic spreads through the graphs, the structure of the walk-count is a

relevant feature of the network topology that influences the ability to track spread. Let

xi (j, t;Hn) = [H t
n]ij be the number of walks from i to j of length t through graph Hn.

Consider any two walks on Hn from i0 to j of length T . The walk k is a sequence of edges

of length T where the first edge begins with i0 and the last edge ends at j. We can denote

the set of walks between i0 to j of length T as Pi0,j(T ) and often suppress the i0, j and T

notation where it is obvious. Note that |Pi0,j(T )| = xj(i0, T ;Hn).

We say that walks s and s′ overlap on r(s, s′) edges if r edges in s and s′ are used at the

same times. For example, the walks {i0a, ab, bc, cd, de, ef, fg, gj} and {i0b, bc, cd, de, eh, hf, fg, gj}

are each of length 8 and r = 2 as they share the edges fg, gj as being traversed by the dis-

ease at the same time (here periods 7 and 8). Although many other edges are used by both

walks, they are not traversed at the same time and hence not the “same” walk. Note that

this implies that two edges are not in common if they are the same edge, but in different

parts of the sequence. It is useful to let K denote the set of all unordered pairs of walks in

P .

Assumption 2. The virulence of the disease on network Gn satisfies (as n → ∞)

1. pn · EdG > 1.

2. xj (i0;T,Gn) · pTn = o (min{1, 1/Er [p
−r
n ]}) where r is the number of edges in common

between any two random walks of length T picked between i0 and j, such that Er [p
−r
n ] =

1

(xj(i0,T ;Hn)

2 )

∑
(s,s′)∈K p

−r(s,s′)
n .
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This assumption captures three natural features of the world. Condition (1) requires

that the reproductive number is at least one—the disease spreads. Condition (2) has two

components. First, it says that the probability of infection relative to the number of walks

is sufficiently low that j is far from guaranteed to become infected (notice at minimum we

require xj (T )·pT < 1). Second, we require that if the graph has a large amount of correlation

between the various walks between nodes i0 and j, then the probability of node j getting

infected declines. This accounts for correlation in the graph, and, combined with Condition

(1), requires that the various walks are not too correlated – a feature we will see holds for

most reasonable graphs used to model data. Note that in the extreme if no walks have

overlap, then xj(T ) · pT < 1 is the binding condition.

4.2.2 Infection Probability Approximation

We begin by calculating the probability that a given node is infected in a given period.

We establish an upper and lower bound for this likelihood which will be useful in calculating

the statistician’s risk set.

Proposition 6. Let Assumption 2 hold. Then for a given j node,

xj(T ) · pT · (1 + o(1)) ≤ P(yjT = 1 | G, p, T, i0) ≤ 1−
(
1− pT

)xj(T )
. (4.1)

In fact, under the maintained assumption since the binomial approximation applies it

follows that the upper and lower bound are of the same order since 1 − (1 − pT )xj(T ) =

xj(T ) · pT · (1+ o(1)). Therefore the infection probability for node j at time T can be closely

approximated by xj(T ) · pT . This is useful because it allows us to focus on the number of

walks as well as its distribution.
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Proof Proposition 6. For the sake of more compact notation, we write xj(i0, T ;Hn) =

xj(T ) for the duration of this proof. Let zs = 1 if node j is infected by at time T along this

walk s and 0 otherwise. First for upper bound, we note that

P(yjT = 1 | G, p, T, i0) = P (∪szs = 1, s = 1, . . . , xj(T ))

= 1− P (∩szs = 0, s = 1, . . . , xj(T ))

≤ 1− Πs=1,...,xj(T )P (zs = 0)

= 1−
(
1− pT

)xj(T )

= xj(T )p
T (1 + o(1))

Where the approximation step in the last line follows from the binomial approximation. For

the lower bound, we note that

P (∪szs = 1, s = 1, . . . , xj(T )) ≥
∑

s=1,...,xj(T )

P(zs = 1)−
∑

s′<s,s=1,...,xj(T )

P(zs′ = 1 and zs = 1)

= xj(T ) · pT︸ ︷︷ ︸
(A)

−
∑

s′<s,s=1,...,xj(T )

P(zs = 1 and zs′ = 1)

︸ ︷︷ ︸
(B)

where we get the inequality by ignoring the further correlation terms from inclusion-exclusion

formula.

Clearly (A) is on the same order as the upper bound, so we need to only show that (B)

is of lesser order than (A) to complete the proof. Let r(s, s′) be a quantifier for the number

of edges shared by s and s′. It follows that:

P(zs = 1 and zs′ = 1) = p2T−r(s,s′)
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We can therefore write∑
s′<s;s,s′∈S

P(zs = 1 and zs′ = 1) =
∑

s′<s;s,s′∈S

p2T−r(s,s′)

=

(
xj(T )

2

)
Erp

2T−r

=
xj(T )

2 − xj(T )

2
p2TErp

−r.

To show that (B) is of lesser order than (A), note that:

xj(T )2−xj(T )

2
p2TErp

−r

xj(T ) · pT
=

xj(T )− 1

2
pTErp

−r

We can then show that this term goes to 0 as n → ∞. First, note that:

xj(T )p
TErp

−r → 0

by the second part of Assumption 2. Then, note that:

pTErp
−r = pT

∑
(s,s′) p

−r(s,s′)(
xj(T )

2

)
=

2

xj(T )(xj(T )− 1)

∑
(s,s′)

pT−r(s,s′)

≤ 2

xj(T )(xj(T )− 1)
xj(T )(xj(T )− 1)pT

= 2pT → 0

where the first equality follows from the definition of Erp
−r. Thus, we know that:

xj(T )− 1

2
pTErp

−r → 0

which completes the proof. □

Next, we will prove a result that relates path counts in a graph to its spectral properties.

Let Hn be an arbitrary adjacency matrix and we define a condition on the eigenvectors of

Hn:
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Definition 7 (Bounded Eigenvectors). A graph Hn has bounded eigenvectors if, given its

eigenvalues λ1(n) > λ2(n) > ... > λn(n), the corresponding eigenvectors satisfying:

Hnui = λi(n)ui

where ||ui||∞ exists for all i.

This condition makes entries of each eigenvector to be bounded – this ensures that we

can properly normalize the eigenvectors. We define the following notation for the normalized

eigenvectors

qi =
1

||ui||∞
ui.

We note a few key implications of bounded eigenvectors. First, entries of each qi have

constant order as n becomes large. Second, if we focus on q1, bounded eigenvectors has

a natural interpretation in terms of centralities. As long as Hn is connected, by Perron-

Frobenius, we know that entries of u1 (and thus q1) will be positive. This positive quantity

is typically referred to as eigenvector centrality. By assuming that there is a maximal entry

of u1 as n becomes large, we assume that there is an upper bound on how central any given

node can be in Hn.

We can then prove a proposition that relates the probability of infection on a graph Hn

to its spectral properties.

Proposition 8. Let Hn be an undirected graph with bounded eigenvectors and have eigen-

values λ1(n) > λ2(n) > ... > λn(n). Let q1 be the first (normalized) eigenvector of Hn, with

entry j as q1(j). Then:

P(yjT = 1 | T, i0, Hn) ∼ λ1(n)
T q1(i)q1(j)

As n → ∞.
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This result directly relates the probability of infection in some graph Hn to the spectral

properties of the graph itself. We do so by first proving a result on the walk counts between

nodes i and j in Hn, and then applying Proposition 6.

Proof Proposition 8. We can first note that because Hn is a real symmetric matrix,

we can diagonalize it as follows:

Hn = QΛQ′ ⇒ HT
n = QΛTQ′

Where Λ is a diagonal matrix of the eigenvalues, and Q is a matrix with the eigenvectors as

columns. We denote qk as the kth column of Q. Then, we can compute:[
HT

n

]
ij
=
[
QΛTQ′]

ij

=

[
n∑

k=1

λk(n)
T qkq

′
k

]
ij

=

[
λ1(n)

T q1q
′
1 +

n∑
k=2

λk(n)
T qkq

′
k

]
ij

= λ1(n)
T [q1q

′
1]ij +

[
n∑

k=2

λ1(n)
T

λ1(n)T
λk(n)

T qkq
′
k

]
ij

= λ1(n)
T [q1q

′
1]ij + λT

1

n∑
k=2

(
λk(n)

λ1(n)

)T

[qkq
′
k]ij

= λ1(n)
T

(
[q1q

′
1]ij +

n∑
k=2

(
λk(n)

λ1(n)

)T

[qkq
′
k]ij

)
We can then note that each term in the summation portion of the expression will be

o
(
λ1(n)

T
)
. We know that by definition λ1(n) > |λk(n)| for k > 1, by the Perron-Frobenius

Theorem. In addition, by bounded eigenvectors, we know that entries of qk will be of constant

75



order. Therefore, we have that:[
HT

n

]
ij
= λ1(n)

T

(
q1(i)q1(j)

′ +
n∑

k=1

(
λk(n)

λ1(n)

)T

qk(i)qk(j)

)

∼ λT
1 q1(i)q1(j)

As n → ∞. Note that our computations hold for generic nodes i and j. An application of

Proposition 6 then yields:

P(yjT = 1 | T, i0, Hn) ∼ pTλ1(n)
T q1(i0)q1(j)

Completing the proof. □

4.2.3 Main Theorem

With the previous results, we now turn to the scenario of a policy maker studying an

infection process on a graph. As previously introduced, the policy maker observes some base

graph, Ĝn. In reality, the disease proceeds on Gn = Ĝn ∪ En, where En is an Erdos-Renyi

random graph on the same n nodes, with link probability βn. We can examine the following

quantity:

S(T ) :=

∑
j P(yjT = 1 | Ĝn, pn, T, i0)∑
j P(yjT = 1 | Gn, pn, T, i0)

This quantity captures the ratio of the expected number of infected nodes that the policy

maker observes, compared to the true number of expected infections. This simplifies from

the α-risk set Qα (T ;Gn) calculations by taking expectations that

|Qα(T ; Ĝn)|
|Qα(T ;Gn)|

=

∑
j 1
{
P(yjT = 1 | Ĝn, pn, T, i0) ≥ α

}
∑

j 1 {P(yjT = 1 | Gn, pn, T, i0) ≥ α}

but the calculation of the defined S(T ) can serve as a starting point.

We keep track of a few spectral properties of Ĝn. As before, we let λ1(n) denote the
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largest eigenvalue of Ĝn; we generally write λ1(n) := λ1 from this point forward. Then, let

u1 be the eigenvector that exactly satisfies Ĝnu1 = λ1u1, with maximal element ν. Following

definition 7 as before, we denote q1 = u1/ν. We can note that while u1 itself is bounded, we

know that w, a function of the ℓ1-norm of u1 will not be bounded as u1 is a positive vector.

As a final preliminary, we make a two part assumption: first, we make a further assumption

on the structure of the graph, and second, we make an assumption on βn, the rate at which

idiosyncratic, unobserved links form in the graph.

Assumption 3. The following condition holds for Ĝn, which establishes a condition for βn.

For some function fn = ||q1||21, the lower bound on the idiosyncratic links is:

βn = ω

(
λ1

fn

)
We can further characterize fn in the case where ν is the maximal element of u1. We can

note that fn = ||q1||21 implies:

ν(
√

fn − 1) = ||u1||1 − ν

We can consider the implication of Assumption 3. We can first consider fn. The equiv-

alent characterization of fn places a restriction on the relative centrality of the maximally

central node. We can interpret ||u1||1 − ν as the cumulative long run influence of nodes that

are not maximally central – those with long run influence less than ν. We know that as

n → ∞, ||u1||1 will grow without bound, so thus the right hand side of the the first condition

grows without bound. We then use
√
fn − 1 as the rate of growth, in terms of ν. The

condition on βn places a minimum on the rate at which idiosyncratic links form, in terms of

this growth rate.
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Then, we define the following quantities:

v :=
∑
j

q1(i0)q1(j)

w :=
∑
j

∑
k

q1(j)q1(k) = ||q1||21 =
(
||u1||1
ν

)2

= fn

Where the final equality follows from Assumption 3. We can then state our first result.

Theorem 9. Let assumption 1, 2, and 3 hold and the observed graph Ĝn satisfies condition

7. For S(T ) defined as follows:

S(T ) :=

∑
j P(yjT = 1 | Ĝn, pn, T, i0)∑
j P(yjT = 1 | Gn, pn, T, i0)

For any ε, δ > 0, the following holds.

1. There exists Tε such that for all T ≥ Tε

S(T ) < ε

2. There exists Tδ such that for all T < Tδ

S(T ) > 1− δ

As n → ∞.

Proof. We can first re-write the numerator of S(T ) using Propositions 6 and 8.∑
j

P(yjT = 1 | Ĝn, pn, T, i0) ∼
∑
j

pTλT
1 q1(i0)q1(j)

= pTλT
1 q1(i0)

∑
j

q1(j)

= pTλT
1 v

Then, we can work with the denominator,
∑

j P(yjT = 1 | Gn, pn, T, i0). The goal here will

be to re-write the expression in terms of Ĝn and βn.

We will begin by computing the number of expected infections based on a single link in
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En. We can think through the necessary summations. First, we sum from s1 = 0 to T − 1,

where s1 denotes the number of links in the walk before the link that goes through En. We

sum from 0, as when s1 = 0, this implies there is a link in En that connects directly to i0.

Then, we need to sum over the possible locations for the “start” of the extra link, accounting

for the number of paths from i0 to this node. This will be multiplied by a term that sums

over both the locations over the end points of the link, and also the end point of the walk.

βn︸︷︷︸
Link

pT︸︷︷︸
Disease

T−1∑
s1=0


(∑

j

xj(i0; s1, Ĝn)

)
︸ ︷︷ ︸

Possible locations for link start

(∑
z

∑
k

xk(z;T − 1− s1, Ĝn)

)
︸ ︷︷ ︸
Possible Locations for Link End, Path End


We can then compute the same expression for when there are two links used in En. The

expression will have a similar format, following the same logic.

β2
np

T

T−2∑
s1=0

T−1∑
s2=s1+1

[(∑
j

xj(i0; s1, Ĝn)

)(∑
z

∑
k

xk(z; s2 − s1 − 1, Ĝn)

)(∑
v

∑
ℓ

xℓ(v;T − 1− s2, Ĝn)

)]
The first time summation is over 0 to T − 2, to leave space for the second link in En. The

second summation index for time ensures that the second link must be “later” in the walk

than the first one. The path count terms go from i0 to the start of the first link in s1 periods.

The second term goes from the end of the first link to the start of the second link in s2−s1−1

periods in Ĝn. Then, the last term goes from the end of the second link to the end of the

walk in the remaining T − 1− s2 periods.

For the sake of space, we now suppress dependence on Ĝn. We can then extend this
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computation to when L of the T links are in En.

βL
n p

T

T−L∑
s1=0

T−L+1∑
s2=s1+1

...

T−1∑
sL=sL−1+1︸ ︷︷ ︸

L sums[(∑
j

xj(i0; s1)

)(∑
z

∑
k

xz(k; s2 − s1 − 1)

)
...

(∑
v

∑
t

xv(t;T − 1− sL)

)]
︸ ︷︷ ︸

L+1 Terms

For each link in En, we sum over the possible positions of the link in the walk, accounting

for the fact there must be L links and the links have order. Then, we do a similar walk

count computation for each section of the walk in Ĝn. There will be L+ 1 of these sections,

broken up by the L links in En. We can then finish this computation by summing over L,

from 0 to T .

pT
T∑

L=0

βL
n

[ T−L∑
s1=0

T−L+1∑
s2=s1+1

...
T−1∑

sL=sL−1+1

(∑
j

xj(i0; s1)

)(∑
z

∑
k

xz(k; s2 − s1 − 1)

)
...(∑

v

∑
t

xv(t;T − sL − 1)

)]
Then recall that by Proposition 8:

xj(i;T ) ∼ λT
1 q1(i)q1(j)

As n → ∞. We can then plug this results into the expression derived above, and simplify.

We will first work with the expression for when L of the T links in the walk are in En.
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βL
n p

T

T−L∑
s1=0

T−L+1∑
s2=s1+1

...
T−1∑

sL=sL−1+1

[(∑
j

λs1
1 q1(i0)q1(j)

)(∑
z

∑
k

λs2−s1−1
1 q1(i)q1(j)

)

...

(∑
v

∑
t

λT−sL−1
1 q1(i)q1(j)

)]

= βL
n p

TλT−LvwL

T−L∑
s1=0

T−L+1∑
s2=s1+1

...
T−1∑

sL=sL−1+1

1

= βL
n p

TλT−LvwL

(
T

L

)
Where

(
T
L

)
is the standard binomial coefficient, which comes from selecting where in the T

steps the L links will go. We can then sum over L:∑
j

P(yjT = 1 | Gn, pn, T, i0) = pTv
T∑

L=0

βL
nλ

T−L
1 wL

(
T

L

)

= pTv(λ1 + βnw)
T

Then, we can analyze the behavior of S(T ). By the above computations, we get that:

S(T ) =

∑
j P(yjT = 1 | Ĝn, pn, T, i0)∑
j P(yjT = 1 | Gn, pn, T, i0)

∼ λT
1 p

Tv

pTv(λ1 + βnw)T

=

(
λ1

λ1 + βnw

)T

Where the asymptotic is with respect to n → ∞. Then, by Assumption 3, we know that:

λ1

λ1 + βnw
=

λ1

λ1 + βnfn
< 1

And thus there exists some T ′ such that for all T ≥ T ′, S(T ) < ε for ε > 0. Conversely, we

also know that for some T ′′, for all T < T ′′, S(T ) > 1− δ for all δ > 0. This completes the

proof. □

Remark 10. We can work with a simplified islands model. We assume that there are K
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islands, each of which is a homogeneous, directed tree with degree d. We assume that the

trees are homogeneous no matter the starting point (they go on for more than T levels no

matter where in the tree you start). We can first compute that:∑
j

P(yjT = 1 | Ĝn) = pTdT

Where the only nodes that can be infected are those that are at in the tree that contains i0.

Note that this comes from there being dT nodes at distance T from i0, but that we ignore

other nodes within distance T from i0 due to the directed nature of the tree.

We can compute the expected number of infections in Gn, where trees can be linked

together via En. We can compute:∑
j

P(yjT = 1 | Gn) = pT
T∑

L=0

βL
nd

T−LKL

(
T

L

)

= pT (βnK + d)T

We can walk through the first step, and then note the simplification follows from the binomial

theorem. Fix some number L ≤ T , such that L is the number of links in En on a given walk.

We can note that the probability of there being L links is βL
n , and that within Ĝn, this will

access dT−L nodes. It only reaches dT−L nodes because L of the links are in En, and thus

only serve as “connectors” on the walks. Then, we can link to K possible islands at each

stage, which happens L times. In doing so, we assume that links between sections of tree

happen sufficiently “far” from each other – this avoids cases where we have paths that loop

(starting down a tree, and then linking to a node further up the tree). Finally, there are
(
T
L

)
places to choose the L links. Finally, the disease travels with probability pT .
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Then, we can work with S(T ):

S(T ) =

∑
j P(yjT = 1 | Ĝn)∑
j P(yjT = 1 | Gn)

=
pTdT

pT (βnK + d)T

=

(
d

d+ βnK

)T

So the condition for S(T ) to be arbitrarily close to 1 for small T , and arbitrarily close to

0 for large T will be:

βn = ω

(
d

K

)
If K = Θ(n), then we have βn > (cd)/n for some constant c. The key assumption here

will be that links in En are sufficiently far apart in the trees. This makes intuitive sense, as

there will be exponetially more nodes “farther down” than “up” each tree.

Remark 11. Consider the following model for Ĝn. There are K communities in space, each

with a lattice like structure within them denoted Ki i ∈ {1, ..., K}. Each Ki contains ni

nodes, with
∑

i ni = n. For simplicity, we can let all islands have the same population

nK = n/K. Let i0 ∈ K1, and all nodes in K1 are at most T steps away. The policy maker is

unaware of links that are added with iid probability βn. Note that even if βn < log n/n, the

islands may still be connected. We can compute that for some ε > 0, the following ensures

that the islands are connected with high probability:

βn = (1 + ε)
K2 log n

n3
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By noting that:

P(Ki connected to Kj) = 1− (1− βn)
n2
K

= 1− (1− βn)
n2/K2

= βn
n2

K2

Where the last line assumes that the standard binomial approximation is reasonable.

We can build up to the same computations as before, but now taking advantage of the

island structure. We suppress the dependence of xj(i;T, Ĝn) on Ĝn for the sake of brevity –

in all cases, we consider paths within Ĝn. We can first compute:

n∑
j=1

P(yjT = 1 | Ĝn, pn, T, i0) = pT
∑
j∈K1

xj(i0;T )

∼ pTλT
1 q1(i0)

∑
j∈K1

q1(j)

Where the only change from the more general case is that we now have a smaller eigenvector

weight, as the values in q1 are non-negative. As before, we can write the denominator of

S(T ) as a function walks in Ĝn. We can begin building up as before.

We will build up to the sum by assuming that there are L links in a given walk that are

idiosyncratic – these can be across islands. When L = 0, we have the same expression as

above for when we only consider Ĝn: the disease cannot escape K1 without the idiosyncratic

links. We can then begin with L = 1.

βn︸︷︷︸
Link

pT︸︷︷︸
Disease

T−1∑
s1=0


(∑

j∈K1

xj(i0; s1)

)
︸ ︷︷ ︸

Possible locations for link start

(∑
z∈Gn

∑
k∈Gn

xk(z;T − 1− s1)

)
︸ ︷︷ ︸
Possible Locations for Link End, Path End


Note that the first summation only considers j ∈ K1, as those are the only nodes reachable

from i0 before using idiosyncratic links. The double summation sums over all nodes in the
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graph, as after the idiosyncratic link, the walk could go anywhere. We know that if z ∈ Ki

and k ∈ Kj, then xk(z; t) = 0 for all t, as this only considers walks through the disconnected

islands of Ĝn. Thus, all of those terms will be 0. We can note that if we apply the spectral

results, we find that this expression reduces to:

βnp
T

T−1∑
s1=0

[(∑
j∈K1

xj(i0; s1)

)(∑
z∈Gn

∑
k∈Gn

xk(z;T − 1− s1)

)]

∼ βnp
T

T−1∑
s1=0

[(∑
j∈K1

λs1
1 q1(i0)q1(j)

)(∑
Ki

∑
z∈Ki

∑
k∈Ki

λT−s1−1
1 q1(z)q1(k)

)]

= βnp
TλT−1

1

[(
q1(i0)

∑
j∈K1

q1(j)

)(∑
Ki

∑
z∈Ki

∑
k∈Ki

q1(z)q1(k)

)]
In an analogous expression to before, though with slightly different eigenvector weights.

We can potentially refine the second term here, noting the cases where z and k are not in

the same island, as thus the eigenvalue weights should be ignored. We can note that the

vI := q1(i0)
∑

j∈K1
q1(j) weights will cancel in the final expression for S(T ), as before. Thus,

the only change in the overall expression will be in w. We write this as wI :

wI :=
∑
j∈Gn

∑
k∈Gn

∑
Ki

1{j, k ∈ Ki}q1(j)q1(k) =
∑
Ki

∑
j∈Ki

∑
k∈Ki

q1(j)q1(k)

We can note that wI ≤ w, as defined before, as we only add a subset of the non-negative

terms. The overall computation for S(T ) will be the same as before, only now with vI and

wI in place of v and w. Thus we will find that for S(T ) to have the desired properties,

βn = ω

(
λ1

wI

)
Where we have a more extreme condition than before.
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4.3 Simulation Result

In this section, we present preliminary simulation results to demonstrate our theorem.

Fix n = 35000 and we generate L as a random geographic network with specified expected

degree Penrose (2003). Each node in L is assigned a position on [0, 1]2 uniformly at random,

and forms links to all nodes within some radius r. To obtain the desired expected degree

d(L) = 75, we define r =
√

d(L)
πn

=
√

75
πn
. We add links independently to L with probability

β = (1+ε) logn
n

, with ε = 0.0001. This computation gives β = 0.0003, for an expected degree

of 10.46 in E. We set a basic reproductive number r0 = 3. We set instances where multiple

links exist between two nodes to count as only a single link. To select p, we first set a basic

reproductive number r0 = 3. Then, we compute p = r0
d̄(G)

, where d̄(G) is the average degree

for the realized G. This computation gives p = 0.035.

We track two quantities: |Q(α;Ĝ,T )|
n

and |Q(α;G,T )|
n

. These quantities represent the coverage

of the confidence sets under the observed and true graphs. Figure 4.1 shows the ratios over

time for α = 0.95. Results are similar with lower values of α. For the first few periods,

the ratios are extremely similar. However, they sharply diverge as the true confidence set

covers almost the entire graph, while the observed confidence set expands slowly. The result

demonstrates that missingness is truly a robustness concern for epidemic modeling.

4.4 Discussion

In this ongoing project, we have preliminary modeling results demonstrating that missing-

ness in contact network has non-trivial effects on modeling epidemic behaviors. Therefore,

further studies on network missingness in epidemic modeling are necessary. For future work,
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Figure 4.1: We track the number of nodes included within the α = 0.95 level confidence set,
compared to the total number of nodes in the graph under the observed and true graphs. For
other values of α, the results are extremely similar. In the first few periods, the coverage of the
confidence sets are similar under the observed and true graphs; however, they sharply diverge as
the true confidence set rapidly envelopes the entire graph.

we first aim to theoretically characterize the conditions when missingness ruins epidemic

model predictions. Moreover, as network geometry has impact on epidemic modeling, we

want to study how network geometry interacts with missingness in the contact network,

and how they jointly influence epidemic modeling. Furthermore, we want to assess the un-

certainty caused by missingness, and how such uncertainty compare to the variation in the

disease transmission process.
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isfeiler and lehman go topological: Message passing simplicial networks. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 1026–1037. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/v139/bodnar21a.html.

G. Bouritsas, F. Frasca, S. P. Zafeiriou, and M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1–1, 2022. doi: 10.1109/TPAMI.2022.3154319.

A. W. Bowman. An alternative method of cross-validation for the smoothing of density
estimates. Biometrika, 71(2):353–360, 1984.

89

https://arxiv.org/pdf/1806.01261.pdf
http://www.cse.msu.edu/
http://www.cse.msu.edu/
http://jmlr.org/papers/v7/belkin06a.html
https://www.nature.com/articles/srep08923
http://www.jstor.org/stable/2288140
https://proceedings.mlr.press/v139/bodnar21a.html


R. R. Brinkman, M. Gasparetto, S. J. J. Lee, A. J. Ribickas, J. Perkins, W. Janssen, R. Smi-
ley, and C. Smith. High-Content Flow Cytometry and Temporal Data Analysis for Defining
a Cellular Signature of Graft-Versus-Host Disease. Biology of Blood and Marrow Trans-
plantation, 13(6):691–700, jun 2007.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep
learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017. doi: 10.1109/MSP.2017.2693418.

M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids,
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E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE MATH-
EMATIK, 1(1):269–271, 1959.

J. Eldridge, M. Belkin, and Y. Wang. Beyond hartigan consistency: Merge distortion metric
for hierarchical clustering. volume 40 of Proceedings of Machine Learning Research, pages
588–606, Paris, France, 03–06 Jul 2015. PMLR.

S. Engebretsen, K. Engø-Monsen, M. A. Aleem, E. S. Gurley, A. Frigessi, and B. F. de Blasio.
Time-aggregated mobile phone mobility data are sufficient for modelling influenza spread:
the case of bangladesh. Journal of The Royal Society Interface, 17(167):20190809, 2020.
doi: 10.1098/rsif.2019.0809. URL https://royalsocietypublishing.org/doi/abs/10.
1098/rsif.2019.0809.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI
Press, 1996.

91

https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0809
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0809


P. D. Fajgelbaum, A. Khandelwal, W. Kim, C. Mantovani, and E. Schaal. Optimal lockdown
in a commuting network. American Economic Review: Insights, 3(4):503–22, December
2021. doi: 10.1257/aeri.20200401. URL https://www.aeaweb.org/articles?id=10.
1257/aeri.20200401.

J. Fan and J. Fan. Design-adaptive Nonparametric Regression. 87(420):998–1004, 1992.

J. Fan, I. Gijbels, T. C. Hu, and L. S. Huang. A study of variable bandwidth selection for
local polynomial regression. Statistica Sinica, 6(1):113–127, 1996. ISSN 10170405.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97(458):611–631, 2002.

A. L. N. Fred and A. K. Jain. Combining multiple clusterings using evidence accumulation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):835–850, 2005.
doi: 10.1109/TPAMI.2005.113.

J. H. Friedman. Multivariate adaptive regression splines.
https://doi.org/10.1214/aos/1176347963, 19:1–67, 3 1991. ISSN 0090-5364. doi:
10.1214/AOS/1176347963.

K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Transactions on information theory, 21(1):
32–40, 1975.
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Chapter 5

Appendix

Chapter 2 Appendices

A Computational Complexity

Knots construction. The first step of skeleton clustering is choosing knots, and in

this work we take overfitting k-means as the default method. The k-means algorithm of

Hartigan and Wong (Hartigan and Wong, 1979) has time complexity O(ndkI), where n is

the number of points, d is the dimension of the data, k is the number of clusters for k-means,

and I is the number of iterations needed for convergence. When using overfitting k-means to

chooses knots, the reference rule is k =
√
n, and hence the complexity is O(n3/2dI). This is a

time consuming step of our clustering framework, and the complexity increases linearly with

d. Therefore, preprocessing the data with dimension reduction techniques or using subject

knowledge to choose knots can be helpful to speed up this process.
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Edges construction. For the edge construction step, we approximate the Delaunay

Triangulation with D̂T (C) by looking at the 2-NN neighborhoods (the Voronoi Density

regions in 2.3.1 ). Hence the main computational task for our edge construction step is the

2-nearest knot search. We used the k-d tree algorithm for this purpose, which gives the

worst-case complexity of O(ndk(1−1/d)). Notably, the computation complexity at this step

is at the worst linear in d, which is a much better rate than computing the exact Delaunay

Triangulation (exponential dependence on d), and our empirical studies have illustrated the

effectiveness of such approximation.

Edge weight construction: VD. Next, we consider the computation complexity of the

different edge weights measurements. For the VD, its numerator can be computed directly

from the 2-NN search when constructing the edges and hence no additional computation is

needed. The denominators are pairwise distances between knots and can be computed with

the worst-case complexity of O(dk2) because the number of nonzero edges is less than k(k−1)
2

.

With k =
√
n, we have the total time complexity of computing the VD to be O(nd).

Edge weight construction: FD. For the Face density, we calculate the projected KDE

at the middle point for each pair of neighboring Voronoi cells. The projection of one data

point onto one central line can be done by matrix multiplication with complexityO(d). Recall

that we only use data points in local Voronoi cells for FD calculation, and the local sample

size would be at nloc = O(
√
n) under the conditions in Section 2.4 and the reference rule

k = [
√
n]. Together it takes O(d

√
n) to calculate the projected data for one edge. With the

projected data, KDE calculation has a time complexity O(c log c) where c = maxj ̸=ℓ{nj+nℓ}

for any pair of knot indexes j, ℓ. Again we have c = O(n/k) = O(
√
n) under the previously

mentioned conditions. We need to do KDE for each edge in the skeleton, which gives the
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overall time complexity of FD weights to O(k2d
√
n+ k2c log c) = O(n3/2d+ n3/2 log n).

Edge weight construction: TD. For Tube density, we similarly perform a pro-

jected KDE for each edge. Let η be the maximum number of points in a tube region

η = maxj,ℓ |{Xi : ∥Πjℓ(Xi) −Xi∥ ≤ R}|, the data projection again takes O(ηd) complexity.

Suppose the minimum density is obtained by a grid search with m grid points, the KDE

step takes a total of O(mη log η) for one edge. To compute the whole edge weights matrix

with k =
√
n, we have the complexity to be O(nηd + nmη log η). Under conditions where

the tube regions for TD estimations is also of size η = O(n/k) = O(
√
k), we have the overall

complexity for VD weights calculation to be O(k2d
√
n+ k2c log c) = O(n3/2d+mn3/2 log n),

which is larger than that for FD due to the grid search for minimum density.

Knots segmentation. In this work, we segment the learned weighted skeleton using

hierarchical clustering. With links that can be updated by Lance-Williams update (Lance

and Williams, 1967) and satisfies the reducibility condition (Gordon, 1987), hierarchical

clustering can be carried out with computation complexity O(N2), where N is the number

of points to start the algorithm with (Murtagh, 1983). For our empirical results we favored

single linkage and average linkage, and both satisfy the requirements for efficient hierarchical

clustering algorithm. We perform hierarchical clustering on the k =
√
n knots, and hence

the computation complexity for segmenting the skeleton structure is O(k2) = O(n).

B Theory for Face Density

Here we derive the convergence rate of the Face Density estimator. Recall that µd is

the Lebesgue measure on the d-dimensional Euclidean space and Fjℓ = Cℓ ∩ Cj is the face
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region between knots cj, cℓ. Let ∂Fjℓ be the boundary of Fjℓ. We consider the following

assumptions:

(D1) (Density conditions) The PDF p has compact support X , is bounded away from zero

that infx∈X p(x) ≥ pmin > 0, supx∈X p(x) ≤ pmax < ∞, and is Lipschitz continuous.

(B2) (Bounded face region) There exist constants c0, c1 such that the face area

c0

k1− 1
d

≤ min
(j,ℓ)∈E

µd−1(Fjℓ) ≤ max
(j,ℓ)∈E

µd−1(Fjℓ) ≤
c1

k1− 1
d

(B3) (Boundary of face bounded) There exists a constant c2 such that

max
(j,ℓ)∈E

µd−2(∂Fjℓ) ≤
c2

k1− 2
d

,

(B4) (Intersecting angle condition) There is an angle θ0 < π such that, for every pair of

intersecting face regions Fij and Fjℓ, the maximal principle angle between the two

subspaces θij,jℓ satisfies θij,jℓ ≤ θ0

(K1) (Kernel function conditions) The kernel functionK is a positive and symmetric function

satisfying
∫
K2(x)dx < ∞,

∫
|x|K(x)dx < ∞,

∫
x2K(x)dx < ∞.

Assumption (D1) is a commonly assumed for the density estimation problem, but usually

with higher-order smoothness conditions. Notably, for consistency of FD estimator we require

only the Lipschitz condition since the bias of the sample estimator will be dominated by a

geometric difference even if we have a higher-order smoothness (see the discussion after

Theorem 10 and Appendix D for more detail). Condition (B2) restricts the shared boundary

of two Voronoi cells to scale at the rate of O(k1− 1
d ). While this condition may seem abstract,

it is a mild condition. To illustrate this, suppose we have k = md points that are on a

uniform grid of [0, 1]d for some integer m. We form the Voronoi cells of these grid points.

The (d − 1)-dimensional volume of the shared boundary of two neighboring Voronoi cells
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will scale at rate O(k1− 1
d ) as k → ∞. (B3) requires the boundaries of the face regions to

scale at most at a rate of O(k1− 2
d ), and (B4) requires that we cannot have two nearby faces

to be parallel to each other. Assumptions (B3) and (B4) are needed when bounding the

geometric difference between the estimator and the population quantity and are both mild

conditions: When the knots form a spherical packing of a smooth region, these conditions

hold. Notably, (D1) and (B2) imply (B1) and hence the consistency of FD requires more

conditions than the consistency of VD. The condition (K1) is a common assumption on the

kernel function (Wasserman, 2006; Scott, 2015) satisfied by many common kernel functions,

including Gaussian kernel.

Theorem 10 (Face Density). Assume (D1), (K1), and (B2-B4). With h → 0, k → ∞,

hk1/d → 0, nh

k1−
1
d
→ ∞, then for any pair j ̸= ℓ, we have∣∣∣∣∣ ŜFD

jℓ

SFD
jℓ

− 1

∣∣∣∣∣ = O
(
hk1/d

)
+Op

(√
k1− 1

d

nh

)
(1)

Theorem 10 shows the convergence rate of estimating the FD. Roughly speaking, the rate

is similar to a 1-dimensional density estimation problem. With d → ∞, we have the rate

to be O
(
h
)
+ Op

(√
k
nh

)
= O

(
h
)
+ Op

(√
1

nloch

)
, where nloc = O

(
n
k

)
is the local effective

sample size. Therefore, the effect of the ambient dimension is negligible when d is large, and

this is because we are estimating a ‘projected’ density on the central line, which reduces to

a 1-dimensional problem.

Noticeably, the bias term in Theorem 10 is of the order O(h). While this rate is optimal

under the Lipschitz smoothness (D1) for density estimation problem, it is slower than the

conventional rate O(h2) when we have bounded second-order derivative of p. One may be
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wondering if higher-order smoothness of p is assumed, can we improve the convergence rate?

Unfortunately, even if p is very smooth, the bias rate will still stay the same at O(h). This is

because there are two sources of bias. The first one is the usual bias from kernel smoothing,

which can be improved to higher-order if we have high-order derivatives of p. The other

source of bias comes from the different geometric shapes of the Voronoi cells Cj and Cℓ (for

illustration see Figure 1 in Appendix D). Consider the characterization of central line as

cj + t(cℓ − cj) for t ∈ [0, 1], and the boundary will occur at t = 1
2
. Regions projected on

to the central line will be different depending on the value of t. Specifically, when t > 1
2
,

the projected region is from Cℓ whereas when t < 1
2
, the projected region is from Cj, and

those projected regions can have shapes different from the face region. This difference leads

to an additional geometric bias of the order O(h) and cannot be improved by higher-order

smoothness of p. In a sense, this bias O(h) is similar to the boundary bias that the density

function is continuous but not differentiable. However, since the non-differentiability is

caused by the geometric difference in two nearby Voronoi cells, it is unclear if we can use

the conventional boundary-correction kernels (Jones, 1993) to correct for this bias.

From Theorem 10, one can see that the optimal bandwidth scales at rate h ≍
(

k1−3/d

2n

)1/3

.

Recall that our reference rule sets k =
√
n so that nloc =

n
k
=

√
n is the average number of

observations per each knot. When d large, 3
d
is negligible. Thus, the optimal bandwidth is

given by h ≍
(
k
n

)1/3
= n

−1/3
loc . While our empirical rule n

−1/5
loc is not optimal in this case, it

still gives to a consistent estimator and our empirical analysis shows that such choice leads

to reliable clustering results; see Appendix F.

One may notice that a small k in Theorem 10 leads to a better convergence rate, which

suggests to use a small k. While this is true from the perspective of estimation, overall a
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small k may lead to poor representation of the data an result in a bad clustering performance.

Empirical results show that we need a sufficiently large number of knots to represent the

data in order for the skeleton clustering to perform appropriately. Therefore, our reference

rule with k =
√
n is a suitable balance between the trade-off between representation and

estimation. We include an empirical analysis on the effect of k on clustering performance in

Appendix F.

C Theory for Tube Density

In this section we derive the convergence rate of the Tube Density estimator. We consider

the following assumptions, which are slightly stronger than the corresponding ones in the

case of the FD:

(D2) (Density conditions) The PDF p has a compact support and is 3-Hölder and infx∈X p(x) ≥

fmin > 0.

(D3) (Disk Density conditions) For any pair cj, cℓ, the minimum disk density location t∗ =

argmint∈[0,1]pDiskjℓ,R(t) ∈ (0, 1) is unique and the second derivative of the disk density

pDisk
(2)
jℓ,R(t

∗) ≥ cmin > 0.

(K2) (Kernel function conditions) The kernel functionK is a positive and symmetric function

satisfying
∫
x2K(α)(x)dx < ∞,

∫
(K(α)(x))2dx < ∞, for all α = 0, 1, 2, where K(α)

denotes the α-th order derivative of K.

(D2) is a stronger version of (D1) that we require additional smoothness condition of p.

We need the 3-Hölder class (slightly weaker than the requirement of third-order derivatives)

to obtain the rate of estimating the minimum (Chacón et al., 2011; Chen et al., 2016). Also,
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a stronger condition (K2) on the kernel function is needed to ensure the gradient estimation

is consistent. Fortunately, common kernel functions such as the Gaussian kernel satisfy these

conditions.

Theorem 11 (Tube Density Consistency). Assume (D2), (D3), and (K2). Let h → 0, k → ∞,

R → 0, nh3 → ∞,nhRd−1 → ∞. Suppose that for every pair cj, cℓ, inft∈[0,1] pDiskjℓ,R(t) and

inft∈[0,1] p̂Diskjℓ,R(t) do not occur at the boundary t = 0, 1. Then for any pair j ̸= ℓ that

shares an edge, we have

pDiskjℓ,R(t) = O(Rd−1), (2)∣∣∣∣ ŜTD
jℓ

STD
jℓ

− 1

∣∣∣∣ = O(h2) +Op

(√
1

nhRd−1

)
+Op

(
1

nh3

)
(3)

Theorem 11 shows that the TD estimator converges to the population TD with a rate

consisting of three components. We allow R → 0 as n → ∞ but this result also applies to

scenarios where R is fixed. The first component O(h2) is the usual smoothing bias. The

second component Op

(√
1

nhRd−1

)
is similar to the stochastic variation part from usual KDE

but with additional dependence on Rd−1. This is due to the fact that, when R → 0, we are

using fewer and fewer observations to perform smoothing, and nRd−1 serves as the effective

sample size. The third component Op

(
1

nh3

)
is due to the error of estimating the location

of the minimum. It is a squared term because the density behaves like a quadratic function

around its minimum due to (D3).

While the convergence rate of TD requires stronger conditions (D2) and (K2) compared

to the conditions (D1) and (K1) when estimating the FD, the TD estimator has a smaller

bias than the FD estimator (comparing Theorem 10 and 11). This is because the TD is
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evaluated on a “regular shape”, which leads to a smoother quantity being estimated.

For the stochastic variation part, the second term in Theorem 11 gives Op

(√
1

nhRd−1

)
while the second term in Theorem 10 gives Op

(√
k1−

1
d

nh

)
. Note that empirically we choose

R to be the average of the root mean squared distances of each Voronoi cell (Section 2.3.3),

which is of order O(k−1/d) with cell sizes to have the same rates. Hence k1−1/d and 1
Rd−1 are

at the same rate and the stochastic variation part are comparable for TD and FD estimators.

However, for TD we have another source of variation coming from the uncertainty of the

location of minimum, which can cause TD to have larger variation than the FD estimator.

Based on the above reasoning, our choice of R leads to 1
Rd−1 ≍ k1−1/d, which implies

the rate O(h2) + Op

(√
k1−1/d

nh

)
+ Op

(
1

nh3

)
. Under our reference rule k =

√
n the optimal

bandwidth is h ≍ n− 1
10

(1+ 1
d
). Recall that the local sample size is about nloc = n/k =

√
n and

hence the optimal bandwidth is h ≍ n
− 1

5
(1+ 1

d
)

loc . When d → ∞, this leads to h ≍ n
−1/5
loc , which

is the same rate on sample size as given by the Silverman’s rule of thumb.

Remark 12. Similar uniform bounds of the Face and Tube density can be derived with an extra

log k factor in the rates through the concentration bound for kernel density estimator (Giné and

Guillou, 2002). Also, similar concentration bounds on the Adjusted Rand Indexes can be achieved

for partition based on the Face and Tube density.

D Proofs

Voronoi Density Consistency

We restate the assumption:

(B1) There exists a constant c0 such that the minimal knot size min(j,ℓ)∈E P(Ajℓ) ≥ c0
k
and
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min(j,ℓ)∈E ∥cj − cℓ∥ ≥ c0
k1/d

, where Ajℓ is the 2-NN region of knots cj, cℓ as defined in

Equation 2.2.

Proof of Theorem 1.

For given knots cj, cℓ, the distance ||cj − cℓ|| is also given. We denote the numerator of

SV D
jℓ as

pjℓ = P(Ajℓ) = EI(Xi : d(Xi, cm) > max{d(Xi, cj), d(Xi, cℓ),∀m ̸= j, l})

and note that the numerator of ŜV D
jℓ is

P̂n(Ajℓ) =
1

n

n∑
i=1

I(Xi : d(Xi, cm) > max{d(Xi, cj), d(Xi, cℓ),∀m ̸= j, l}),

which is a sum of binary variables and has variance σ2
jℓ =

pjℓ(1−pjℓ)

n
. By the Chebyshev’s

inequality, ∣∣P̂n(Ajℓ)− pjℓ
∣∣ = Op(σ

1/2
jℓ ) = Op

([
pjℓ(1− pjℓ)

n

]1/2)
Note that the region Ajℓ is changing with respect to k. The ratio is then∣∣∣∣∣ ŜV D

jℓ

SV D
jℓ

− 1

∣∣∣∣∣ =
∣∣∣∣∣ P̂n(Ajℓ)

P(Ajℓ)
− 1

∣∣∣∣∣ = 1

pjℓ
Op

([
pjℓ(1− pjℓ)

n

]1/2)

= Op

([
(1− pjℓ)

npjℓ

]1/2)
= Op

([
(1− c0/k)

nc0/k

]1/2)
= Op

((
k

n

)1/2)
by assumption (B1) that min(j,ℓ)∈E P(Ajℓ) ≥ c0

k
, which completes the proof for Equation

2.12.

To get the uniform bound, we first start with the concentration bound. Note that
(
I(Xi ∈

Ajℓ) − pjℓ
)
has zero mean and |I(Xi ∈ Ajℓ)− pjℓ| ≤ 1. Hence by Bernstein inequalities we
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have

P

{∣∣∣∣∣ P̂n(Ajℓ)

pjℓ
− 1

∣∣∣∣∣ > ε

}
= P

{∣∣P̂n(Ajℓ)− pjℓ
∣∣ > εpjℓ

}
= P

{∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ Ajℓ)− pjℓ

∣∣∣∣∣ > εpjℓ

}

= 2P

{
n∑

i=1

(I(Xi ∈ Ajℓ)− pjℓ) > nεpjℓ

}

≤ 2 exp

{
−

1
2
ε2p2jℓn

2∑n
i=1 E

[
(I(Xi ∈ Ajℓ)− pjℓ)

2]+ 1
3
εpjℓn

}

= 2 exp

{
−

1
2
ε2p2jℓn

2

npjℓ(1− pjℓ) +
1
3
εpjℓn

}

= 2 exp

{
−

1
2
ε2p2jℓn

pjℓ(1− pjℓ) +
1
3
εpjℓ

}
Note that plugging in the pjℓ = Ω

(
1
k

)
rate to above concentration bound we can recover the

Op

(√
k
n

)
rate in Equation 2.12. Then by union bound we have

P
{
max
(j,ℓ)∈S

|Ŝjℓ/Sjℓ − 1| > ε

}
≤ P

{
max
j,ℓ

|Ŝjℓ/Sjℓ − 1| > ε

}
≤
∑
j,ℓ

P
{
|Ŝjℓ/Sjℓ − 1| > ε

}
≤ k(k − 1)

2
max
j,ℓ

P

{∣∣∣∣∣ P̂n(Ajℓ)

pjℓ
− 1

∣∣∣∣∣ > ε

}

≤ k(k − 1)max
j,ℓ

{
exp

(
−

1
2
ε2p2jℓn

pjℓ(1− pjℓ) +
1
3
εpjℓ

)}

≤ k(k − 1) exp

(
−

1
2
ε2pminn

(1− pmin) +
1
3
ε

)
where pmin = minjℓ pjℓ. Therefore we can derive the uniform error bound that

max
j,ℓ

∣∣∣∣∣ ŜV D
jℓ

SV D
jℓ

− 1

∣∣∣∣∣ = Op

(√
k

n
log k

)
,

when n → ∞, k → ∞, n
k
→ ∞.

□
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Proof. of Theorem 2 (Performance guarantee for Voronoi density) We note that, as-

suming (P1),

P
{
ARI(L∗, L̂) < 1

}
≤ P {there exists at least one wrongly cut edge}

= P
{
max
(j,ℓ)∈S

|Ŝjℓ/Sjℓ − 1| > ε

}
≤ k(k − 1) exp

(
−

1
2
ε2pminn

(1− pmin) +
1
3
ε

)
□

by the uniform bound derived above.

Face Density Consistency

Let p(x) be the density function of the data distribution, let µd be the Lebesgue measure

on the d-dimensional Euclidean space, let Fjℓ = C̄ℓ∩ C̄j denote the face between knots cj, cℓ,

and let ∂Fjℓ be the boundary of Fjℓ. We consider the following assumptions: Again, we

recall the assumptions:

(D1) (Density conditions) The PDF p has compact support X , is bounded away from zero

that infx∈X p(x) ≥ pmin > 0, supx∈X p(x) ≤ pmax < ∞, and is Lipschitz continuous.

(B2) There exist constants c0, c1 such that the face area

c0

k1− 1
d

≤ min
(j,ℓ)∈E

µd−1(Fjℓ) ≤ max
(j,ℓ)∈E

µd−1(Fjℓ) ≤
c1

k1− 1
d

(B3) There exists a constant c2 such that max(j,ℓ)∈E µd−2(∂Fjℓ) ≤ c2

k1−
2
d
,

(B4) There is an angle θ0 < π such that, for every pair of intersecting face regions Fij and

Fjℓ, the maximal principle angle between the two subspaces θij,jℓ satisfies θij,jℓ ≤ θ0

(K1) (Kernel function conditions) The kernel functionK is a positive and symmetric function

satisfying
∫
K2(x)dx < ∞,

∫
|x|K(x)dx < ∞,

∫
x2K(x)dx < ∞.
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Proof of Theorem 10.

Our analysis starts with the usual bias-variance decomposition that

ŜFD
jℓ − SFD

jℓ = ŜFD
jℓ − E(ŜFD

jℓ )︸ ︷︷ ︸
stochastic variation

+E(ŜFD
jℓ )− SFD

jℓ︸ ︷︷ ︸
bias

.

We analyze the two term separately. Before we start our proof, we first recall some useful

notations.

Recall that the face region between two knots cj, cℓ is Fjℓ ≡ Cj ∩Cl and c∗ = cj +
1
2
(cℓ −

cj) =
1
2
(cℓ + cj) and Ljℓ = {cj − a(cℓ − cj) : a ∈ [0, 1]} is the central line passing through cj

and cℓ, and for a value a ∈ [0, 1]. The face Fjℓ =
{
x ∈ Cj ∪ Cl : Πjℓ(x) = c∗

}
, where Πjℓ

denotes the projection onto Ljℓ. The quantity µs(dx) denotes the integration with respect

to s-dimensional volume. We now reparametrize any point in Ljℓ using a unit distance t.

Let Tjℓ,t =
{
x ∈ X : Πjℓ(x) = c∗ + t

cℓ−cj
||cℓ−cj ||

}
be the subspace orthogonal to Ljℓ at the point

c∗ + t
cℓ−cj

||cℓ−cj || . t is 1-dimensional distance to c∗ along the line passing through cj and cℓ. Let

qjℓ(t) =

∫
(Cj∪Cℓ)∩Tjℓ,t

p(x)µd−1(dx)

With these quantities, SFD
jℓ = qjℓ(0) and that qjℓ(t) is a 1-dimensional quantity. Our

estimator is

ŜFD
jℓ =

1

nh

n∑
i=1

K

(
Πjℓ(Xi)− c∗

h

)
I(Xi ∈ Cj ∪ Cℓ).
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Bias: We study the bias part first. A direct computation shows that

E[ŜFD
jℓ ] = E

(
1

nh

n∑
i=1

K

(
Πjℓ(Xi)− c∗

h

)
I(Xi ∈ Cj ∪ Cℓ)

)
(4)

=
1

h

∫
x∈X

K

(
Πjℓ(x)− c∗

h

)
I(x ∈ Cj ∪ Cℓ)p(x)µd(dx) (5)

=
1

h

∫
Ljℓ

K

(c∗ + t
cℓ−cj

||cℓ−cj || − c∗

h

)(∫
(Cj∪Cℓ)∩Tjℓ,t

p(y)µd−1(dy)

)
d

(
cj + t

cℓ − cj
||cℓ − cj||

)
(6)

=
1

h

∫
R
K

(∥∥t cℓ−cj
||cℓ−cj ||

∥∥
h

)
qjℓ(t)dt (7)

=
1

h

∫
R
K

(
t

h

)
qjℓ(t)dt (8)

=

∫
R
K(u)qjℓ(hu)du, (9)

where for the third equality, we split the integration with respect to cj + t
cℓ−cj

||cℓ−cj || ∈ Ljℓ

and the integration with respect to the subspace orthogonal to Ljℓ at cj + t
cℓ−cj

||cℓ−cj || . This

is possible because all the points in Tjℓ,t have the same projection onto Ljℓ. For the forth

equality, we used the symmetry of the kernel function. the property of the kernel function

that K(x) = K(∥x∥). For the last equality, we used the change of variable that u = t
h
and

got the simplified form.

The expansion of

qjℓ(t) =

∫
(Cj∪Cℓ)∩Tjℓ,t

p(y)µd−1(dy)
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Figure 1: Decomposition of Wjℓ(t). The dark red segment is Fjℓ ⊕ t, which has the same shape
with Fjℓ. The green segments consist ∆j,ℓ(t), the part leading to geometric bias.

is more involved when t ≈ 0. Let

Wjℓ(t) = (Cj ∪ Cℓ) ∩ Tjℓ,t

=



Cj ∩ Tjℓ,t, t < 0,

Cℓ ∩ Tjℓ,t, t > 0,

(Cj ∪ Cℓ) ∩ Tjℓ,0 = Fjℓ, t = 0

be the region that leads to qjℓ(t). For a face Fjℓ and a real number t ∈ R, we denote

Fjℓ ⊕ t =

{
x+ t

cℓ − cj
||cℓ − cj||

: x ∈ Fjℓ

}
.

By the above notation, we can decompose

Wjℓ(t) = [Fjℓ ⊕ t] ∪∆j,ℓ(t),

where ∆j,ℓ(t) is the additional region when moving away from t = 0; see Figure 1 for an

example.
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Figure 2: Decomposition of Wjℓ(t). The red regions are Fjℓ and the projected Fjℓ ⊕ t, while the
blue band region denotes ∆j,ℓ(t). All the α angles such as ∠FAH and all the β angles such as
∠HAD are bounded by θ0 from assumption (B4).

Thus, the difference

qjℓ(hu)− qjℓ(0) =

∫
Wjℓ(hu)

p(y)µd−1(dy)−
∫
Wjℓ(0)

p(y)µd−1(dy)

=

∫
Fjℓ⊕hu

p(y)µd−1(dy)−
∫
Fjℓ

p(y)µd−1(dy)︸ ︷︷ ︸
(I)

+

∫
∆jℓ(hu)

p(y)µd−1(dy)︸ ︷︷ ︸
(II)

.

(I) is the usual bias caused by the change of density. Note that the Lipchitz condition in

(D1) implies that there is a constant Cg such that |p(x1)− p(x2)| ≤ Cg|x1 − x2|. Since every

point can be matched nicely between Fjℓ ⊕ hu and Fjℓ, it can be bounded by

|(I)| ≤ µd−1(Fjℓ)Cgh|u|.

(II) is the bias due to the change of volume, so we call it a geometric bias. With an upper

bound of the density, (II) can be bounded by (II) ≤ µd−1(∆j,ℓ(hu)) · pmax. Thus, we only

need to bound the volume µd−1(∆j,ℓ(hu)).

∆j,ℓ(t) is illustrated by the blue region in Figure 2. The width of the band region like

FH will all be bounded by t tan(θ0) = O(t), and as t → 0 the surface area (circumference)

will be bounded by O
(
µd−2(∂Fjℓ

)
).
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Thus, the volume of the blue region µd−1(∆j,ℓ(t)) ≤ O
(
µd−2(∂Fjℓ)t

)
, which leads to the

bound

(II) ≤ O
(
h|u| · µd−2(∂Fjℓ)

)
· pmax.

Putting altogether, we have∣∣qjℓ(hu)− qjℓ(0)
∣∣ ≤ µd−1(Fjℓ)Cgh|u|+ pmaxh|u| ·O

(
µd−2(∂Fjℓ) tan(θ0)

)
(10)

This, together with equation (9), implies that

|E[ŜFD
jℓ ]− qjℓ(0)︸ ︷︷ ︸

=SFD
jℓ

| =
∣∣∣∣∫

R
K(u)[qjℓ(hu)− qjℓ(0)]du

∣∣∣∣
≤
∫
R
K(u)|qjℓ(hu)− qjℓ(0)|du

≤ h

[ ∫
R
|u|K(u)du

]
×
[
µd−1(Fjℓ)Cg + pmaxO

(
µd−2(∂Fjℓ)

)]
(B2−3)
= O

(
h ·
[

1

k1−1/d

])
+O

(
h ·
[

1

k1−2/d

])
As a result,

|E[ŜFD
jℓ ]− SFD

jℓ | = O

(
h

k1−1/d

)
+O

(
h

k1−2/d

)
(11)

Moreover, note that

h

k1−1/d
× k1−2/d

h
=

1

k1/d
→ 0 (12)

since k → ∞. Therefore the bias given by the geometric difference (II) dominates the bias

given by the change in density (I). Even if we assume a higher order derivative, the bias in

(II) will still dominate the component in (I).

Therefore, the overall bias can be expressed as reduces to

|E[ŜFD
jℓ ]− SFD

jℓ | = O

(
h

k1−2/d

)
(13)
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Stochastic variation: For the stochastic variation part, we have

V ar(ŜFD
jℓ ) = V ar

(
1

nh

n∑
i=1

K

(
Πjℓ(Xi)− c∗)

h

)
I(Xi ∈ Cj ∪ Cℓ)

)
≤ 1

nh2
E
[
K2

(
Πjℓ(Xi)− c∗

h

)
I(Xi ∈ Cj ∪ Cℓ)

]
≤ 1

nh

∫
K2(u)

(
qjℓ(0) + µd−1(Fjℓ)Cg + pmaxh|u|µd−2(∂Fjℓ) tan(θ0)

)
du

≤ 1

nh

∫
K2(u)

(
qjℓ(0) +O

(
h

k1−1/d

)
+O

(
h

k1−2/d

))
du

(14)

by the same decomposition in (9) and the bound in (10) and the assumptions (K1). Note

that similar to(12), the second term in (14) is at a slower rate than the third term, so we

can simplify it as

V ar(ŜFD
jℓ ) = O

(
qjℓ(0)

nh

)
+O

(
1

nk1−2/d

)
. (15)

Combining (11) and (14), we conclude that for ∀j, ℓ,

|ŜFD
jℓ − SFD

jℓ | = O

(
h

k1−2/d

)
+Op

(√
qjℓ(0)

nh

)
+Op

(√
1

nk1−2/d

)
(16)

Note that the volume of face region Fjℓ decreases when k increases. By assumption (D1)

and (B2), we have

qjℓ(0) = SFD
jℓ ≥ pmin min

(j,ℓ)∈E
µd−1(Fjℓ) = pmin

c0

k1− 1
d

. (17)

For the theorem we again take the ratio between the estimated and the true face density to

accommodate the fact that the true face density is decreasing with number of knots, and we

have that This implies that∣∣∣∣∣ ŜFD
jℓ

SFD
jℓ

− 1

∣∣∣∣∣ = O
(
hk1/d

)
+Op

(√
k1− 1

d

nh

)
+Op

(√
k

n

)
(18)

When hk1/d → 0,

k1− 1
d

nh
× n

k
=

1

hk1/d
→ ∞, (19)
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so the second term dominates the third term in (18) and the rate reduces to∣∣∣∣∣ ŜFD
jℓ

SFD
jℓ

− 1

∣∣∣∣∣ = O
(
hk1/d

)
+Op

(√
k1− 1

d

nh

)
, (20)

which completes the proof.

□

Tube Density Consistency

We consider the following assumptions, which are slightly stronger than those in the case of

the FD:

(D2) (Density conditions) The PDF p has compact support, is in the 3-Hölder class, and

infx∈X p(x) ≥ fmin > 0.

(D3) (Disk Density conditions) For any pair cj, cℓ, the minimum disk density location t∗ =

argmint∈[0,1]pDiskjℓ,R(t) ∈ (0, 1) is unique and satisfies pDisk
(2)
jℓ,R(t

∗) ≥ cmin > 0.

(K2) (Kernel function conditions) The kernel functionK is a positive and symmetric function

satisfying
∫
x2K(α)(x)dx < ∞,

∫
(K(α)(x))2dx < ∞, for all α = 0, 1, 2, where K(α)

denotes the α-th order derivative of K.

Proof of Theorem 11.

Let t∗ = argmintpDiskjℓ,R(t) and t̂∗ = argmint ˆpDiskjℓ,R(t). Then the tube densities

STD
jℓ = inf

t∈[0,1]
pDiskjℓ,R(t) = pDiskjℓ,R(t

∗),

ŜTD
jℓ = inf

t∈[0,1]
ˆpDiskjℓ,R(t) = ˆpDiskjℓ,R(t̂

∗).

Since the ratio difference

ŜTD
jℓ

STD
jℓ

− 1 =
1

STD
jℓ

(
ŜTD
jℓ − STD

jℓ

)
,
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we will focus on the difference ŜTD
jℓ − STD

jℓ .

The difference admits the following decomposition:

ŜTD
jℓ − STD

jℓ = ˆpDiskjℓ,R(t̂
∗)− pDiskjℓ,R(t

∗)

= ˆpDiskjℓ,R(t̂
∗)− ˆpDiskjℓ,R(t

∗)︸ ︷︷ ︸
(I)

+ ˆpDiskjℓ,R(t
∗)− E( ˆpDiskjℓ,R(t

∗))︸ ︷︷ ︸
(II)

+ E( ˆpDiskjℓ,R(t
∗))− pDiskjℓ,R(t

∗)︸ ︷︷ ︸
(III)

.

It is easier to start with term (III) and then term (II) and then term (I).

Recall that

qv,R(y) =

∫
Disk(y,R,v)

p(x)dx,

and hence pDiskjℓ,R(t) = qcℓ−cj ,R(cj − t(cℓ − cj)).

(III): Bias. Note that the kernel weights w(x) = K
(Πjℓ(x)−cj−t(cℓ−cj)

h

)
is the same for all

x ∈ Disk(cj − t(cℓ − cj), R, cℓ − cj). Let Ljℓ = {cj − t(cℓ − cj) : t ∈ R} be the line passing

through cj and cℓ. Then

E[p̂Diskjℓ,R(t)] = E
(

1

nh

n∑
i=1

K

(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I
(
||Xi − Πjℓ(Xi)|| ≤ R

))
=

1

h

∫
x∈X

K

(
Πjℓ(x)− cj − t(cℓ − cj)

h

)
I(||x− Πjℓ(x)|| ≤ R)p(x)µd(dx)

=
1

h

∫
Ljℓ

K

(
z − cj − t(cℓ − cj)

h

)(∫
Disk(z,R,cℓ−cj)

p(y)µd−1(dy)

)
dz

=
1

h

∫
Ljℓ

K

(
z − cj − t(cℓ − cj)

h

)
qcℓ−cj ,R(z)dz

=
||cj − cℓ||

h

∫
Ljℓ

K

(
(s− t)||cj − cℓ||

h

)
qcℓ−cj ,R(cj − s(cℓ − cj))ds

where for the third equality we split the integration with respect to z ∈ Ljℓ and the integra-

tion with respect to y ∈ Disk(z,R, cℓ−cj), and for the last equality we set z = cj−s(cℓ−cj)

and utilized the symmetry of the kernel function K.
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Then by another change of variable that u =
(s−t)||cℓ−cj ||

h
and Taylor expansion, we have

E[p̂Diskjℓ,R(t)] =
∫

K(u)qcℓ−cj ,R

(
cj − t(cℓ − cj)− hu

cℓ − cj
||cj − cℓ||

)
du

=

∫
K(u)

(
qcℓ−cj ,R(cj − t(cℓ − cj)) + hu · g1 +

1

2
h2u2 · g2 +O(h2)

)
du

where

g1 =

(
cℓ − cj

||cj − cℓ||

)T

· ∇qcℓ−cj ,R(cj − t(cℓ − cj))

g2 =

(
cℓ − cj

||cj − cℓ||

)T

· ∇∇qcℓ−cj ,R(cj − t(cℓ − cj))

(
cℓ − cj

||cj − cℓ||

)
When R → 0, assumption (D2) implies that there is a constant Cd−1 that

2pminCd−1R
d−1 ≤ pDiskjℓ,R(t) ≤ 2pmaxCd−1R

d−1 = O(Rd−1) (21)

where 0 < pmin ≤ infx∈X p(x), supx∈X p(x) ≤ pmax < ∞. Since the disk density is shrinking

at rate O(Rd−1), one can easily verify that the gradient and Hessian of the disk density

function is also at rate O(Rd−1). Namely,

g1 = O(Rd−1), g2 = O(Rd−1).

By assumption (D2) we have g1 and g2 to be bounded and therefore Thus,

E[p̂Diskjℓ,R(t)] = qcℓ−cj ,R(cj − t(cℓ − cj))

∫
K(u)du+ h

[ ∫
uK(u)du

]
· g1

+
1

2
h2

[ ∫
u2K(u)du

]
· g2 +O(h2Rd−1)

= qcℓ−cj ,R(cj − t(cℓ − cj)) +O(h2Rd−1)

= pDiskjℓ,R(t) +O(h2Rd−1),

where for the second equality we used, by assumption (K)∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du < ∞

so we conclude that |E[p̂Diskjℓ,R(t)]− pDiskjℓ,R(t)| = O(h2Rd−1)
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(II): Stochastic variation.

V ar(p̂Diskjℓ,R(t)) = V ar

(
1

nh

n∑
i=1

K

(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I(||Xi − Πjℓ(Xi) ≤ R)

)
≤ 1

nh2
E
[
K2

(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I(||Xi − Πjℓ(Xi) ≤ R)

]
=

1

nh

∫
K2(u)

(
qcℓ−cj ,R(cj − t(cℓ − cj)) + hu · g1 +O(h2)

)
du

= O

(
1

nh

)
by the same analysis procedure as for Face Density and the assumptions (D1), (K1).

Now, by assumption (D2), the face density qcℓ−cj ,R(cj − t(cℓ − cj)) = O(Rd−1), which

leads to

V ar(p̂Diskjℓ,R(t)) = O

(
Rd−1

nh

)
.

Therefore,

|p̂Diskjℓ,R(t)− E[p̂Diskjℓ,R(t)]| = Op

(√
Rd−1

nh

)
and

|p̂Diskjℓ,R(t)− pDiskjℓ,R(t)| = O(h2Rd−1) +Op

(√
Rd−1

nh

)
. (22)

(I): Change in position. Finally, we bound the term

(I) = ˆpDiskjℓ,R(t̂
∗)− ˆpDiskjℓ,R(t

∗).

Note that the minimizer t̂∗ satisfies the gradient condition

ˆpDisk
′
jℓ,R(t̂

∗) = 0.
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By a simple Taylor expansion at t̂∗, we obtain

(I) = −( ˆpDiskjℓ,R(t
∗)− ˆpDiskjℓ,R(t̂

∗))

= −(t∗ − t̂∗) ˆpDisk
′
jℓ,R(t̂

∗)︸ ︷︷ ︸
=0

−1

2
(t∗ − t̂∗)2 ˆpDisk

′′
jℓ,R(t̂

∗) +O(|t∗ − t̂∗|3)

= O(|t∗ − t̂∗|2).

Thus, we only need to derive the rate of t∗ − t̂∗.

Now by the fact that t∗ solves the population gradient condition pDisk′jℓ,R(t
∗) = 0, we

have

ˆpDisk
′
jℓ,R(t

∗)− pDisk′jℓ,R(t
∗) = ˆpDisk

′
jℓ,R(t

∗)− ˆpDisk
′
jℓ,R(t̂

∗)

= ˆpDisk
′′
jℓ,R(t

∗)(t∗ − t̂∗) +O(|t∗ − t̂∗|2).

Because ˆpDisk
′′
jℓ,R(t

∗)
P→ pDisk′′jℓ,R(t

∗) from the analysis of term (II) and (III), we conclude

that

t̂∗ − t∗ = O( ˆpDisk
′
jℓ,R(t

∗)− pDisk′jℓ,R(t
∗)) = O(h2Rd−1) +OP

(√
Rd−1

nh3

)
.

Note that the above rate analysis follows from the same analysis as term (II) and (III) except

that we are using gradient rather than the density.

As a result, we conclude that

(I) = O(|t∗ − t̂∗|2) = O(h4R2d−2) +OP

(
Rd−1

nh3

)
.

Combining together, we have

|ŜTD
jℓ − STD

jℓ | = (I) + (II) + (III)

= O(h4R2d−2) +Op

(
Rd−1

nh3

)
+O(h2Rd−1) +Op

(√
Rd−1

nh

)
= O(h2Rd−1) +Op

(√
Rd−1

nh

)
+Op

(
Rd−1

nh3

)
.
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Using the fact that STD
jℓ ≥ 2pminCd−1R

d−1 from equation (21), we conclude that∣∣∣∣∣ ŜTD
jℓ

STD
jℓ

− 1

∣∣∣∣∣ = O(h2) +Op

(√
1

nhRd−1

)
+Op

(
1

nh3

)
,

which completes the proof.

□

E Choice of Linkage

In this section, we use different simulations to investigate the effect of different linkage

criteria under our skeleton clustering framework. We start with the same Yinyang data to

illustrate how different linkages cope with well-separated clusters in Appendix E. Next, we

add noisy observations to the Yinyang data and make the comparison again in Appendix

E. Moreover, we repeat this comparison using different simulation scenarios when there are

overlapping clusters; the comparisons in Appendix E, E, E, and E.

Except for the linkage criterion, all other procedures are the same with the following

settings: we use k-means clustering with k =
√
n to find knots and use the Voronoi density

as the density-aided similarity measure. We vary the total number of final clusters from 1

to 40 and compare the adjusted Rand Index (ARI) to the actual cluster label. The entire

procedure is repeated 100 times for the comprehensive comparison of various linkage methods

from the hclust function in R. The medium performances of the resulting clusterings are

summarized in Table 1. For datasets without noisy points we only present the medium ARI

at the true number of clusters, while for data with noisy points we show the best medium

ARI across different S and record the corresponding S in the bracket. Best linkages for each

data scenario are in bold.
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average centroid complete mcquitty median minimax single Ward
Yinyang,d=10 1.000 0.119 -0.017 1.000 0.111 0.027 1.000 1.000
Yinyang,d=100 1.000 0.098 -0.008 1.000 0.097 0.055 1.000 1.000
Yinyang,d=500 0.560 0.074 -0.028 0.587 0.054 0.062 1.000 0.526

Yinyang,d=10000 0.533 0.107 -0.029 0.555 0.021 0.106 1.000 0.456
MixMickey,d=10 0.731 -0.005 0.017 0.380 0.007 0.010 -0.004 0.194
MixMickey,d=100 0.740 -0.005 0.005 0.341 0.010 0.043 -0.001 0.129
MixMickey,d=500 0.710 -0.003 0.003 0.356 0.013 -0.003 -0.004 0.180

MixMickey,d=10000 0.692 -0.006 -0.014 0.297 0.011 -0.045 -0.006 0.217
MixStar,d=10 0.763 0.0001 0.00532 0.510 0.001 0.0488 0.0001 0.424
MixStar,d=100 0.763 0.0001 0.007 0.540 0.001 0.0503 0.0001 0.415
MixStar,d=500 0.762 0.0001 0.004 0.537 0.001 0.039 0.0001 0.444
MixStar,d=1000 0.721 0.0001 0.005 0.533 0.001 0.050 0.0001 0.418

NoisyYinyang,d=10 0.875(S=4) 0.182(4) 0.102(35) 0.397(3) 0.180(13) 0.132(28) 0.968(16) 0.535(4)
NoisyYinyang,d=100 0.875(S=3) 0.182(6) 0.103(35) 0.798(2) 0.242(20) 0.135(23) 0.999(14) 0.695(4)
NoisyYinyang,d=500 0.875(S=3) 0.121(10) 0.107(28) 0.783(3) 0.209(20) 0.143(21) 0.999(11) 0.539(4)
NoisyYinyang,d=1000 0.875(S=3) 0.176(7) 0.111(27) 0.875(3) 0.193(28) 0.149(19) 0.998(10) 0.372(5)
NoisyMixMickey,d=10 0.686(S=5) 0.119(34) 0.093(29) 0.413(6) 0.077(39) 0.157(15) 0.501(31) 0.235(5)
NoisyMixMickey,d=100 0.700(S=5) 0.141(37) 0.094(29) 0.358(6) 0.095(39) 0.158(16) 0.506(31) 0.221(6)
NoisyMixMickey,d=500 0.697(S=5) 0.095(37) 0.091(30) 0.359(7) 0.098(39) 0.155(17) 0.502(31) 0.232(6)
NoisyMixMickey,d=1000 0.692(S=5) 0.122(36) 0.091(29) 0.386(6) 0.104(39) 0.153(17) 0.497(31) 0.241(5)

NoisyMixStar,d=10 0.783(S=10) 0.109(40) 0.221(30) 0.613(11) 0.140(40) 0.330(17) 0.623(31) 0.476(4)
NoisyMixStar,d=100 0.779(S=9) 0.129(40) 0.220(28) 0.627(10) 0.171(40) 0.334(18) 0.667(30) 0.487(4)
NoisyMixStar,d=500 0.788(S=8) 0.115(40) 0.220(29) 0.604(9) 0.158(40) 0.328(16) 0.651(30) 0.498(4)
NoisyMixStar,d=1000 0.791(S=9) 0.113(40) 0.219(29) 0.599(9) 0.150(40) 0.333(15) 0.621(30) 0.476(4)

Table 1: Comparison of the linkage methods across different simulated datasets. All reported values
are mediums of 100 random simulations. For datasets without noisy points, the performance at the
true number of cluster is reported (S = 5 for Yinyang, S = 3 for Mix Mickey and Mix Star). For
datasets with noisy points, we report the best performance across different number of clusters and
include the number of cluster at which the max is achieved in the bracket.

From Table 1, either average linkage or single linkage achieve the best and reliable perfor-

mance. Thus, we recommend using one of them as the linkage criterion. We include a more

detailed analysis of each dataset in the following subsections and we plot the 5th percentile,

medium, and 95th percentile of the adjusted Rand index for single linkage, average linkage,

and complete linkage. Plots comparing all the linkages on the different datasets are deferred

to Appendix E.

Yinyang Data

We begin by comparing the different linkage methods on the Yinyang datasets with

different numbers of noisy dimensions (same data as in Section 2.5.1). The results are shown
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in Figure 3. For each dimension (d = 10, 100, 500, 1000), the medium adjusted Rand index

of the 100 runs is plotted with the solid line, and the 5 percentile to 95 percentile range is

depicted with lighter color band. The true number of clusters S = 5 is shown as the red

dotted vertical line.

Figure 3: Clustering results with different linkage methods across different numbers of final clusters
on Yinyang data. Line for medium and band from 5th percentile to 95th percentile. The vertical
red dashed line indicates the true number of 5 clusters.

We observe that single linkage and average linkage have similar performance for lower

dimensions d = 10 and d = 100, with medium performance achieving nearly perfect clustering

at the true number of clusters. However, the clustering results returned by single linkage are

more stable, having a narrower band while the band of average linkage is much wider. For

cases with higher dimensions d = 500, 1000, we observe single linkage still stably achieves

nearly perfect clustering at k = 5, which corroborates our results in Section 2.5.1, but

average linkage fails to get such good clustering performance when dimensions get higher.

Therefore, single linkage has superior performance on the Yinyang data, arguably because

the true manifold of the data has well-separated clusters that single linkage is suitable for

separation.
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Noisy Yinyang Data

To create additional noise, we added 640 (20% of the number of signals) noisy points to

the Yinyang dataset, sampled uniformly from [−3, 3] × [−3, 3] in the first two dimensions,

with random Gaussian variables in the other dimensions the same way we generated Yinyang

data. The adjusted Rand indexes are calculated only for the true signal data points and the

results are shown in Figure 4.

Figure 4: Clustering results with different linkage methods across different numbers of final clusters
on Yinyang data with noisy points. The vertical red dashed line indicates the true number of 5
clusters.

Average linkage can achieve slightly better performance than single linkage around the

true number of clusters S = 5 for lower dimensions (d = 10, 100), but fails to achieve

satisfactory clustering performance when dimensionality get higher (d = 500, 1000). The

performance of single linkage improves with S being slightly larger than the actual number

5 and can yield nearly perfect clusters with S being around 15 to 20. A further investigation

reveals that large S will group noisy points into separate clusters and hence improves the

clustering performance; see Figure 5. This suggests that our framework may be used for

anomaly detection.
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Figure 5: The clustering results with single linkage in skeleton clustering with different number of
final clusters S for Noisy Yinyang data, d = 1000.

Figure 6: First two dimensions of Mix Mickey data.

Mix Mickey Data

The well-separated structures in the Yingyang data may provide advantages to the single

linkage. To investigate the effect of linkage criteria on the overlapping clusters, we consider

a three-Gaussian mixture model in 2D case that we call it the Mix Mickey data. The large

cluster is centered at (0, 0) with the covariance matrix being a diagonal matrix of 2 and

has 2000 points. The two smaller clusters are centered at (3, 3) and (−3, 3) respectively,

and both have a covariance matrix being a diagonal matrix of 1, and each has 600 points.

Random Gaussian variables are added to make the data d = 10, 100, 500, 1000 dimensions

via the same way we generate the Yinyang data. Figure 6 presents a scatter plot of the first

two dimensions; the three clusters have a substantial amount of overlap so that it is difficult

for clustering methods to separate them into three distinct clusters. The results under the

same linkages analysis pipeline are shown in Figure 7.
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Remark 13. GMM can be favored in this data example but is unstable and cannot work with too

many noisy dimensions. We present some comparisons including GMM in Appendix F.

Figure 7: Clustering results with different linkage methods across different numbers of final clusters
on Mix Mickey data. The vertical red dashed line indicates the true number of 3 clusters.

We observe that average linkage gives good performance at S = 3 (the true number of

clusters) and single linkage fails to give a satisfying performance under this scenario, giving

non-informative clusters at low S (only extracting small clusters) and too fragmented clusters

at high S. The average linkage is a criterion that tends to create spherical clusters with

similar sizes and hence is better suited for this simulated data. Thus, our experiment shows

that, for data containing overlapping clusters with roughly spherical shapes, the average

linkage criterion in the knots segmentation step is preferred.

Noisy Mix Mickey Data

In this section, we experiment with a scenario with both overlapping clusters and noisy

observations. We added 640 (20% of the number of signals) noisy points to the Mix Mickey

dataset, sampled uniformly from [−6, 6] × [−5, 6] in the first two dimensions, with random

Gaussian noises in the other dimensions the same way as in Mix Mickey data. The adjusted

Rand indices are measured only on the true signal data points with the results shown in
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Figure 8.

Figure 8: Clustering results with different linkage methods across different numbers of final clusters
on Mix Mickey data with Noise. The vertical red dashed line indicates the true number of 3 clusters.

Average linkage still give good performance and is superior than the single linkage, which

fails to give reasonable clustering performance under a decent number of clusters. Notably,

average linkage achieves the best performance with the S being slightly higher than 3 due

to the introduction of noisy data points.

Mix Star Data

We present here the Mix Star dataset, another 3-GMM data but with a more elongated

shape as illustrated in Figure 9. The three clusters are all generated as 2D Gaussian with

5 and 0.3 on the diagonal of the covariance matrix with respective centers at (4, 0), (−4, 0),

and (0,−4), and then are rotated to get a star-like shape. Each cluster has 1000 sample

points, and random Gaussian variables with standard deviation 0.1 are added to make the

data d = 10, 100, 500, 1000 dimensions. There is still decent overlap among clusters, but each

cluster is more distinct compared to Mix Mickey. We apply the same analysis pipeline as the

Yinyang and Mix Mickey data and compare different linkage criteria. Figure 10 display the

median clustering performance. Again, we see that average linkage has the best performance.
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Figure 9: First two dimensions of the Mix Star data.

Figure 10: Clustering results with different linkage methods across different numbers of final clusters
on Mix Star data. The vertical red dashed line indicates the true number of 3 clusters.

Noisy Mix Star

To investigate the effect of added noises, we make the data similar to the Noisy Mix Mickey

by adding 600 (20% of the number of signals) noisy points to the Mix Star dataset, sampled

uniformly from [−10, 10]× [−10, 5] in the first two dimensions, with random Gaussian noises

in the other dimensions generated the same way. The results of the linkage comparison

results are shown in Figure 11. Average linkage still gives the best clustering results in this

scenario.

In summary, as illustrated by all the simulations in this section, our skeleton clustering

framework is able to handle noisy data points by tuning the number of final clusters and can

cope with overlapping clusters by choosing appropriate linkage criterion for skeleton segmen-

tation. Broadly speaking, the appropriate choice of linkage method depends on the intrinsic
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Figure 11: Clustering results with different linkage methods across different numbers of final clusters
on Mix Star data with Noise.

geometric structure of the data and may require subject matter knowledge or exploratory

analysis. Specifically, if the intrinsic clusters are well-separated, single linkage is preferred

as it gives clear cuts for disjoint components. But if the clusters are believed to have some

degree of overlapping with each cluster approximately spherically shaped, average linkage

criterion can lead to better performance.

All Linkage Comparisons

Figures 12 and 13 display the median clustering performances of all linkage methods under

different numbers of clusters using Yinyang and noisy Yinyang data. We see that average

linkage and single linkage dominate all other methods, while single linkage is superior in

those two cases.

Figures 14 and 15 present the median clustering performance under different number of

clusters for the Mix Mickey and noisy Mix Mickey data (same setup in Section E). Similar

to the case of Yinyang data, we observe that average linkage and single linkage dominate all

other methods, while average linkage is superior among the two.

To further investigate how the clusters will be like in high dimensions, we present 2D
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Figure 12: Clustering results with different linkage methods across different numbers of final clusters
on Yinyang Data.

Figure 13: Clustering results with different linkage methods across different numbers of final clusters
on Noisy Yinyang Data.

scatterplot of clustering results under S = 3 (final number of clusters is 3) of the first two

coordinates in Figure 16. We use the data with d = 1000 and color the clusters using red,

green, and blue. Clearly, average linkage successfully recover the actual clusters while other

methods fail to recover. Note that single linkage does not perform well because clusters are

overlapping with each other.

Figures 17 and 18 present the median clustering performance under different number of

clusters for the Mix Star and noisy Mix Star data. We observe that average linkage and

131



Figure 14: Clustering results with different linkage methods across different numbers of final clusters
on Mix Mickey data.

Figure 15: Clustering results with different linkage methods across different numbers of final clusters
on Mix Mickey data with Noise.
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Figure 16: Comparing linkage criteria in segmentation on the Mix Mickey data, d = 1000.

Figure 17: Clustering results with different linkage methods across different numbers of final clusters
on Mix Star data.

single linkage dominate all other methods.

F Additional Data Analysis

Performance with Different Number of Knots

We analyze how the number of knots would affect the performance of the skeleton

clustering. We empirically test the effect of the number of knots, k, on the final clustering

performance on Yinyang data with dimensions 10, 100, 500 and 1000. For each dimension,
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Figure 18: Clustering results with different linkage methods across different numbers of final clusters
on Mix Star data with Noise.

we simulated the Yinyang data 100 times, and for each simulated data we carried out the

default skeleton clustering procedure with single linkage and different k (other steps the

same as in Section 2.5.1). Figure 19 displays the median adjusted Rand index given by each

method across different k, where the reference rule with k = 57 is marked by the vertical

dash line. We see that as long as k is sufficiently large, skeleton clustering works well.

Self-Organizing Map

The Self-Organizing Map (SOM) is another popular prototype clustering method and

can be used as an alternative to k-means clustering in finding knots. Thus, here we conduct

a simple experiment to examine the performance of using SOM to find knots. We examine

the performance using Yingyang data with d = 10 to d = 1000. The identical procedure as

in Section 2.5.1 is applied except that the knots are now detected by the SOM rather than

overfitting k-means. The total number of grid points in the SOM is the total number of knots

we obtain and, to be comparable to k-means with k =
√
n knots, we used ⌈n1/4⌉ breaks for

each dimension of the SOM grid, giving a total of ⌈n1/4⌉2 initial grid points. However, the
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Figure 19: Adjusted Rand indexes of different clustering methods against different number of knots
on 100 simulated Yinyang data.

SOM may return knots with very tiny sample size, on which the density-aided similarity

measures cannot be calculated. Therefore, we remove knots with less than 3 data points and

use the remaining ones for skeleton construction.

Figure 20 summarizes the result. The top left panel shows the knots from the SOM (after

post-processing), which are located around the main data structures and are representative to

the original data as well. The dendrogram shows the cluster structure of the SOM knots using

Voronoi density on one 100-dimensional Yinyang data. In the bottom row, we display the

adjusted Rand indices from the clustering methods. Compared to the results of Figure 2.6,

the adjusted Rand indices given by the skeleton clustering with SOM knots are similarly

good when the dimension is not so high (d = 10 and 100). But when the data dimension
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Figure 20: Adjusted Rand indexes using SOM for knots selection on Yinyang data.

becomes high (d = 500, 1000), knots constructed by SOM lead to worse clustering results.

Therefore, overfitting k-means is favored in this work. Another limitation of SOM is that

we need to perform some post-processing to remove tiny knots; in the case of k-means, we

do not need such procedure.

Bandwidth Selection Yinyang Data

The estimations of the FD and the TD involve the use of the projected kernel density

estimation, for which the type of kernel and the bandwidth need to be specified. Similar to

the usual KDE, the kernel function does not affect the final performance much, so by default

we use the Gaussian kernel in all of our empirical studies. It is worth noting that using the

uniform kernel can save some computation since it has compact support, but empirically we

find using the Gaussian kernel leads to better final clustering results. In what follows, we

focus on the bandwidth selection.

It is known that the bandwidth is a pivotal parameter that can significantly affect the
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Figure 21: Performance of skeleton clustering on Yinyang data d = 10, 100, 500, 1000 with Face and
Tube density by different bandwidth selectors. Voronoi density result is included for comparison.

estimation result of a kernel density estimator. In Figure 21, we conduct a simulation using

the Yinyang data with different dimensions of noisy Gaussian variables (see Section 2.5.1 for

more details) and compare the performance of three common bandwidth selectors: the nor-

mal scale bandwidth (NS) (Chacón et al., 2011), the least-squared cross-validation (LSCV)

(Bowman, 1984; Rudemo, 1982), and the plug-in approach (PI) (Wand and Jones, 1994).

Each edge is allowed to have its own bandwidth. Voronoi density performance results are

also included for comparison. We found that the NS performs reliably well while the others

may have unstable performance. A similar comparison of the bandwidth selectors on an-

other dataset is presented in Appendix F and the NS also performs relatively better than the

other bandwidth selectors.. As a result, we recommend using the NS as the default band-

width selector. Additionally, since the density estimations are all 1-dimensional, in practice

it is possible to examine the estimated density to assess the degree of oversmoothing or
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undersmoothing and manually adjust the bandwidth.

In addition to different bandwidth selectors, we also study how the bandwidth should

depend on the sample size for clustering purpose. In 1-dimensional data, the normal scale

bandwidth agrees with Silverman’s rule of thumb (Silverman, 1986) giving the bandwidth

as h = 4
3

1/5
σ̂n

−1/5
loc , where σ̂ is the standard deviation of the sample used in the edge weight

calculation, and nloc the number of sample points used. Empirically we tested the clustering

performance with FD and TD calculated under bandwidth with rates on nloc from −1/3

to −1/10 (see Appendix F). We found that the clustering performance with FD and TD

generally stays stable with varying bandwidth rates, although a larger bandwidth (slower

rate than O
(
n
−1/5
loc

)
) may give better clustering results with TD when the dimension of the

data is high.

Bandwidth Selection with Mix Mickey

We present additional results comparing different bandwidth selectors on the Mix Mickey

dataset generated the same way as in Section E. We use average linkage for all the included

skeleton clustering approaches. The results are presented in Figure 22. The selectors have

similar performances on this Mix Mickey dataset, but NS again seems to perform better with

larger dimensions, which corroborates our default choice of using NS for bandwidth.

Performance under Different Bandwidth Rate

In this section we present empirical results on how changing the bandwidth rate affects

the performance of clustering. We consider the Yinyang data in Section 2.5.1 with d =

10, 100, 500, 1000. We compare the Face and Tube density where the bandwidth is selected
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Figure 22: Performance of skeleton clustering on Mix Mickey data d = 10, 100, 500, 1000 with
Face and Tube density by different bandwidth selectors. Voronoi density result is included for
comparison.

by Silverman’s rule of thumb with different rates, ranging from n
−1/3
loc to n

−1/10
loc . Note that

the original Silverman’s rule of thumb will be at rate n
−1/5
loc . We repeat the experiment 100

times and record the adjust Rand index in Figure 23.

When the dimension is low (top panels), all bandwidth within this range works well.

When the dimension is large (bottom panels), a slower rate (larger bandwidth) seems to

be showing a better performance for the TD. Interestingly, the face density yields a robust

result across different rates of bandwidth. Note that for the TD, the theory (Theorem 11)

suggests the choice at rate h ≍ n
−1/5
loc is optimal for estimation in large d, the same rate may

not lead to a the optimal clustering performance. Figure 23 bottom-right panel suggests

that the choice h ≍ n
−1/10
loc may have a better clustering performance in this case.
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Figure 23: Adjusted Rand indexes of skeleton clustering with Face and Tube density under different
bandwidth rate on 100 simulated Yinyang datasets. The thick lines indicate the median adjusted
Rand index of a given method.

Adaptive Radius for Tube Density

We compare the clustering performance of Tube density when using fixed radius and that

when using adaptive radius as described in Section 2.3.3. The data is the same Yinyang data

in Section 2.5.1 and the results are presented in Figure 24. The two approaches (adaptive

and fixed radius) have a similar performance.
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Figure 24: Comparison of radius choices on Yinyang data with dimensions 10, 100, 500, 1000.

Higher Standard Deviations for Noisy Dimensions

We investigate how does changing the noise level of the added noisy dimensions of our

simulation examples change the clustering performance. Here we simulate Yinyang data with

different standard deviations of the added dimensions. We apply the same analysis procedure

as in Section 2.5.1 is applied. The adjusted Rand indexes of each clustering methods on 100

simulated datasets with under setting are presented in Figure 25.

We observe that increasing the standard deviation of the noisy dimensions (noise level)

has a stronger impact than adding more noisy variables. For example, increasing σ =

0.1 → 0.2 scales the standard deviation by a factor of 2 (scales the variance 4 times), but

the clustering performance with σ = 0.2, d = 100 is worse than that with σ = 0.1, d = 500.

However, we still observe that the skeleton clustering with Voronoi density similarity measure

can give good clustering performance even under the setting with σ = 0.4 and d = 100.

Mix Mickey with GMM

We compare the performance of Gaussian Mixture Models (GMMs) to our methods

using the Mix Mickey data same as in Section E. Unfortunately, the GMM method from

clusterR package in R cannot work with dimension 500 and 1000 case because of too
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much noisy dimensions, so we only compare the case of dimension 10 and 100. For the

skeleton clustering, we use average linkage for the segmentation step the same as in Section

E. Because this data is generated from 3-GMM and we fit the GMM with 3 components, the

GMM naturally has the best performance. However, our proposed approaches may achieve

a comparable performance to the GMM and are capable of handling high dimensional data

(d = 500, 1000).

Graphical Representation of GvHD Data Clusters

We visualize the skeleton structure of the clusters identified on the GvHD dataset in

Section 2.6. These graph representations are generated by the igraph package in R. Cluster

6 only has 1 knot with 17 corresponding data points and is hence omitted in Figure 27. We

observe that most clusters display a hammer-like structure, which is non-spherical and not

favorable for some classical clustering methods. Only Cluster 3 has a spherical shape in this

data.

G Additional Simulated Data Examples

Manifold Mixture Data

In the Yinyang data and the Mix Mickey data experiments, the underlying components are

all two-dimensional structures. Here we consider the data composed of structures of different

intrinsic dimensions called the manifold mixture data. The simulated manifold mixture

data, as illustrated in the left panel of Figure 28, consists of a 2-dimensional plane with

2000 data points, a 3-dimensional Gaussian cluster with 400 data points, and an essentially
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1-dimensional ring shape with 800 data points. There are a total of 3200 observations

and we choose k = [
√
3200] = 57 knots. Similar to the other two simulations, we include

Gaussian noise variables to make the data high-dimensional (d = 10, 100, 500, 1000) and make

comparisons between the same set of clustering methods. The true number of components

S = 3 is provided to all the clustering algorithms.

Figure 29 summarizes the performance of each method. Traditional methods (SL, KM,

and SC) do not perform well when d > 10 while all methods of skeleton clustering perform

very well when d ≤ 500. Notably, the skeleton clustering with VD still has a perfect perfor-

mance even when d = 1000, whereas skeleton clustering based on other similarity measures

gives satisfying results.

Ring Data

The ring data is constructed by a mixture distribution such that with a probability of 1
6
we

sample from the ring structure and with a probability of 5
6
we sample from the central part.

The ring structure is generated by a uniform distribution over the ring {(x1, x2) : x
2
1+x2

2 = 1}

and is corrupted with an additive Gaussian noise N(0, 0.22I2). The central part is simply

a Gaussian N(0, 0.22I2). We generate a total of n = 1200 points from the above mixture

and add the high dimensional noise with the same procedure as in Section 2.5.1. The same

skeleton clustering approached are applied as well as the classical approaches, with the final

number of clusters chosen to be 2. The result is displayed in Figure 31. Again, the density-

based skeleton clustering methods work well even when the dimension is large.
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H Additional Real Data Examples

Zipcode Data

This dataset consists of n = 2000 16× 16 images of handwritten Hindu-Arabic numerals

from (Stuetzle and Nugent, 2010). We use the overfitting k-means to find k = 45 knots.

Similar to the procedure in Section 2.5.1, we consider four similarity measures to obtain the

edge weight: VD, FD, TD, and AD. We use single linkage for the the four skeleton clus-

tering approaches and compare them to three traditional methods: the direct single linkage

hierarchical clustering (SL), the direct k-means clustering (KM), and spectral clustering

(SC).

The result is shown in the left panel of Figure 32 with the adjusted Rand index plotted

against different number of total cluster S. The gray vertical line indicates S = 10, which is

the actual number of digits. The skeleton clustering with VD (Voron) gives the best cluster-

ing result in terms of adjusted Rand index at the true 10 clusters and gives good clustering

results when the number of clusters is specified to be larger than the truth. However we

note that spectral clustering (SC) and naive k-means clustering (KM) give comparably good

results with small number of clusters.

The right panel of Figure 32 is the “denoised” version of the digits. We estimate the

density of each observation by [
√
n]-nearest-neighbor density estimator and remove the ob-

servations with the lowest 10% density. We see that all clustering results are slightly im-

proved, but such improvement may come from the decreased total sample size after denoising.

Notably, the skeleton clustering with Tube density (Tube) generates significantly better clus-

tering results after denoising the data, giving adjusted Rand indexes comparable to skeleton
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clustering with Voronoi density. This shows skeleton clustering with Tube density can be

sensitive to noises in real data but still has the potential to give insightful clustering results.

Olive Oil Data

We consider another real dataset: the the Olive Oil data (Tsimidou et al., 1987), a

popular dataset for cluster analysis. This data set represents d = 8 chemical measurements

on different specimens of olive oil produced in 9 different regions in Italy (northern Apulia,

southern Apulia, Calabria, Sicily, inland Sardinia, and coast Sardinia, eastern and western

Liguria, Umbria) . There are a total of n = 572 observations in the dataset.

Same comparison procedure as in Section H is employed. The performance of different

similarity measures is presented in Figure 33. Different color denotes different similarity

measures and the gray vertical line indicates the actual number of clusters 9. Overall, the

skeleton clustering with Voronoi density and Tube density works well; the spectral clustering

also performs well in this case. The fact that average distance fails to capture clusters in the

data highlights the importance of using a density-aided similarity in this case. Note that we

also include the clustering performance on the ‘denoised’ data, in which we remove the 10%

observation with the lowest
√
n-Nearest-Neighbor density estimate.

Chapter 3 Appendices

I Computational Complexity

We briefly analyze the computational costs of the proposed skeleton regression framework.

The first main computational burden of the proposed regression procedure is at the skeleton
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construction step. Wei and Chen (2021) has provided the computational analysis on this. In

particular, when constructing knots, the k-means algorithm of Hartigan and Wong (Hartigan

and Wong, 1979) has time complexity O(ndkI), where n is the number of points, d is the

dimension of the data, k is the number of clusters for k-means, and I is the number of

iterations needed for convergence. For the edge construction step, the approximate Delaunay

Triangulation only depends on the 2-NN neighborhoods, and the k-d tree algorithm for the

2-nearest knot search gives the worst-case complexity of O(ndk(1−1/d)). For the edge weights

with Voronoi density, the numerator can be computed directly from the 2-NN search without

additional computation and the denominators as pairwise distances between knots can be

computed with the worst-case complexity of O(dk2).

Given the skeleton, we then project original feature vectors onto the skeleton, which

is not much time-consuming. Finding the edge to project depends on identifying the two

nearest knots, which is provided in the skeleton construction step. Projection is taking inner

product computations and takes O(nd) for all the feature vectors.

The next major computational burden is to calculate the skeleton-based distance between

points on the skeleton. The general version of Dijkstra’s algorithm (Dijkstra, 1959) takes

Θ(|E|+ |V|2) = Θ(k2) for each run. However, ideally, we want the pairwise distances between

all the inputs, but finding the shortest path for n(n−1)
2

times can be time-consuming. In

practice, we can speed up the calculation by constraining the distance calculation to local

neighborhoods.

With all the pairwise skeleton-based distances between projected feature points given,

the S-kernel estimate at one point takes nloc kernel weights computation where nloc refers to

the local support of the kernel function. S-Lspline takes O(n) time to transform the data
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and then a single run of matrix multiplication and inversion to get the coefficients.

J Proofs

Kernel Regression: Convergence on Edge Point

ProofTheorem 3. Let B(s, hn) ⊂ S be the support for the kernel function Kh(.) at point

s ∈ S with bandwidth hn. For an edge point s ∈ Ejℓ ∈ E , where E is the overall set of edges

defined as open sets. As n → ∞, hn → 0, for sufficiently large n, by the property of an open

set, we have

B(s, hn) ⊂ Ejℓ

and by our definition of skeleton distance, for two points s, s′ ∈ Ejℓ on the same edge

in the skeleton, dS(s, s
′) = ∥s− s′∥ where ∥.∥ denotes the Euclidean distance and is 1-

dimensional as parametrized on the same edge. Also we have Kh(Sj, sℓ) ≡ Kh(dS(Sj, sℓ)) =

Kh(∥Sj − sℓ∥) = K
(

Sj−sℓ
h

)
.

Consequently, the skeleton-based kernel regression estimator reduces to

m̂n(s) =
1

nhn

∑n
j=1 YjK(

Sj−s

hn
)

1
nhn

∑n
j=1K(

Sj−s

hn
)

(23)

and we can use the classical asymptotic results for kernel regression in continuous case with

(Bierens, 1983; Wasserman, 2006; Chen et al., 2017).

Let ĝn(s) =
1

nhn

∑n
j=1K

(
Sj−s

hn

)
. We express the difference as

m̂n(s)−mS(s) =
[m̂n(s)−mS(s)]ĝn(s)

ĝn(s)
=

1
nhn

∑n
j=1[Yj −mS(s)]K(

Sj−s

hn
)

1
nhn

∑n
j=1K(

Sj−s

hn
)

(24)

and we analyze the denominator and numerator below.

Let g(s) be the density at point s on the skeleton. For the denominator, we start with
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the bias:

|Eĝn(s)− g(s)| =
∣∣∣∣ 1hn

∫
K

(
s− y

hn

)
g(y)dy − g(x)

∫
K(y)dy

∣∣∣∣
=

∣∣∣∣∫ K(z)[g(s− hnz)− g(s)]dz

∣∣∣∣
≤
∫

K(z)C1 |hnz| dz = C1hn

∫
K(z) |z| dz = O(hn),

where C1 is the Lipschitz constant of the density function. For the variance, we have

Var (ĝn(s)) ≤
1

nh2
n

∫
K2

(
s− y

hn

)
g(y)dy

=
1

nhn

∫
K2(z)g(s− hnz)dz

≤ 1

nhn

∫
K2(z)[g(s) + C1 |hnz|]dz

=
1

nhn

[
g(s)

∫
K2(z)dz + C1hn

∫
K2(z) |z| dz

]
=

1

nhn

g(s)

∫
K2(z)dz + o

(
1

nhn

)
.

Putting it altogether, we have

|ĝn(s)− g(s)| = O(hn) +Op

(√
1

nhn

)
.

Note that we only assume Lipschitz continuity and hence has the bias of rate O(hn) rather

than the usual O(h2
n) rate with second order smoothness. Higher-order smoothness of g may

not improve the overall estimation rate due to the fact that we only have Lipschitz continuity

of the regression function.
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Now we analyze the numerator of equation (24). We start with the decomposition

[m̂n(s)−mS(s)]ĝ(s) =
1

nhn

n∑
j=1

UjK

(
s− Sj

hn

)
︸ ︷︷ ︸

q1(s)

+
1

n

n∑
j=1

{
[mS(Sj)−m(s)]K

(
s− Sj

hn

)
1

hn

− E
[
[mS(Sj)−mS(s)]K

(
s− Sj

hn

)
1

hn

]}
︸ ︷︷ ︸

q2(s)

+
1

n

n∑
j=1

E
[
[mS(Sj)−mS(s)]K

(
s− Sj

hn

)
1

hn

]
︸ ︷︷ ︸

q3(s)

.

First, we show that

q1(s) = Op

(√
1

nhn

)
.

Let

vn,j(s) = UjK

(
s− Sj

hn

)
1√
hn

and we have √
nhnq1(s) =

1√
n

n∑
j=1

vn,j(s).

Thus, its mean is

Evn,j(s) = E
{
UjK

(
s− Sj

hn

)
1√
hn

}
= 0

and the variance is

E[vn,j(s)2] = EU2
j K

(
s− Sj

hn

)2
1

hn

=

∫
σ2
u(s− hnz)g(s− hnz)K(z)2dz

→ σ2
u(s)g(s)

∫
K(z)2dz = O(1),

where for the second equality we use the change of variable and by assumption we have
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∫
K(z)2dz < ∞. Therefore,

q1(s) = Op

(√
1

nhn

)
.

For the second term, note that E(q2(s)) = 0 and the variance is

E
[√

nhnq2(s)
]2

=

∫
[mS(s− hnz)−mS(s)]

2g(s− hnz)K(z)2dz

− hn

{∫
[mS(s− hnz)−mS(s)]g(s− hnz)K(z)dz

}2

→ 0

when hn → 0, and hence,

q2(s) = op

(√
1

nhn

)
.

For the last term, note that we have

q3(s) =

∫
[mS(s− hnz)−mS(s)]g(s− hnz)K(z)dz

=

∫
[mS(s− hnz)g(s− hnz)−mS(s)g(s)]K(z)dz −mS(s)

∫
[g(s− hnz)− g(s)]K(z)dz

≤ C1hn

∫
|z|K(z)dz + C2hn

∫
|z|K(z)dz

where C1 is the Lipschitz constant for m(s)g(s) and C2 is the Lipschitz constant for g(s).

Therefore,

q3(s) = O(hn)

Putting all three terms together, [m̂(s)−m(s)]ĝ(s) = O(hn) +Op

(√
1

nhn

)
. As a result,

equation (24) becomes

m̂n(s)−mS(s) =
[m̂n(s)−mS(s)]ĝ(s)

ĝ(s)
=

O(hn) +Op

(√
1

nhn

)
g(s) +O(hn) +Op

(√
1

nhn

)
= O(hn) +Op

(√
1

nhn

)
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by Taylor expansion of the fraction.

□

Kernel Regression: Convergence on Knot with Zero Mass

For the ease of proof, we first prove Proposition 5 and then prove Theorem 4.

ProofProposition 5. Let s ∈ V be a knot with no mass, i.e., P (Sj = s) = 0. The

kernel regression can be decomposed as

m̂(s) =
1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ V ∩ B(s, hn))

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ V ∩ B(s, hn))

=
1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 YjI(Sj = s)

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 I(Sj = s)

=
ε1,n(s) + ν1,n(s)

ε2,n(s) + ν2,n(s)
.

Because s is a point without probability mass, ν1,n(s) = ν2,n(s) = 0, so the above can

further reduce to

m̂(s) =
1

nhn

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ E ∩ B(s, hn))

1
nhn

∑n
j=1 Khn(Sj, s)I(Sj ∈ E ∩ B(s, hn))

.

However, different from the case on edges, the support of the kernel intersects with

multiple edges even when hn → 0, so we study the contribution of each edge individually.

Note that when hn → 0, the only knot that exists in the intersection B(s, hn) ∩ E is s. So

we only need to consider contributions of edges adjacent to s.

Let I collect all the edge indices with one knot being s, i.e., ℓ ∈ I implies that there

is an edge between s and vℓ ∈ V . Let Eℓ be the edge connecting s and vℓ. The indicator

function I(Sj ∈ E ∩B(s, hn)) =
∑

ℓ∈I I(Sj ∈ Eℓ ∩B(s, hn)). With this, we can rewrite m̂(s)
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as

m̂(s) =

∑
ℓ∈I

1
nhn

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ Eℓ ∩ B(s, hn))∑

ℓ∈I
1

nhn

∑n
j=1 Khn(Sj, s)I(Sj ∈ Eℓ ∩ B(s, hn))

=

∑
ℓ∈I m̂n,ℓ(s)ĝn,ℓ(s)∑

ℓ∈I ĝn,ℓ(s)
.

where

ĝn,ℓ(s) =
1

nhn

n∑
j=1

K

(
Sj − s

hn

)
I(Sj ∈ Eℓ ∩ B(s, hn)),

m̂n,ℓ(s) · ĝn,ℓ(s) =
1

nhn

n∑
j=1

Yj

(
Sj − s

hn

)
I(Sj ∈ Eℓ ∩ B(s, hn)).

Thus, we will analyze gn,ℓ(s) and m̂n,ℓ(s)ĝn,ℓ(s). For a point Sj on the edge Eℓ, we can

reparamterize it as Sj = Tjvℓ + (1 − Tj)s for some Tj ∈ (0, 1). The location s corresponds

to the case t = 0 and any Sj ∈ Eℓ will be mapped to Tj > 0. With this reparameterization,

we can write

ĝn,ℓ(s) =
1

nhn

n∑
j=1

K

(
Tj

hn

(vℓ − s)

)
I(Sj ∈ Eℓ ∩ B(s, hn)),

m̂n,ℓ(s) · ĝn,ℓ(s) =
1

nhn

n∑
j=1

YjK

(
Tj

hn

(vℓ − s)

)
I(Sj ∈ Eℓ ∩ B(s, hn)).

To study the limiting behavior when hn → 0, let gℓ(t) = g((1 − t)s + tvℓ), gℓ(0) =

limx↓0 gℓ(x); mℓ(t) = mS((1 − t)s + tvℓ), mℓ(0) = limt↓0mℓ(t); and σ2
ℓ (t) = E(|Uj|2|Sj =

(1− t)s+ tvℓ) , σ
2
ℓ (0) = limt↓0 σ

2
ℓ (t).

Using the fact that Tj(vℓ − s) = Sj − s,

E(f(Tj(vℓ − s))I(Sj ∈ Eℓ ∩ B(s, hn))) = E(f(Sj − s)I(Sj ∈ Eℓ ∩ B(s, hn)))

=

∫
t>0

f(t)gℓ(t)dt
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for any integrable function f . The bias of the denominator can be written as∣∣∣∣Eĝn,ℓ(s)− 1

2
gℓ(0)

∣∣∣∣ = ∣∣∣∣ 1hn

∫
t>0

K

(
t

hn

)
gℓ(t)dt− gℓ(0)

∫
z>0

K(z)

∣∣∣∣
=

∣∣∣∣∫
z>0

K(z)[gℓ(hnz)− gℓ(0)]dz

∣∣∣∣
≤
∫
z>0

K(z)C1hnzdz

= C1hn

∫
z>0

K(z)zdz = O(hn).

For stochastic variation, we have

Var (ĝn,ℓ(s)) ≤
1

nh2
n

∫
t>0

K2

(
t

hn

)
gℓ(t)dt

=
1

nhn

∫
z>0

K2(z)g(hnz)dz

≤ 1

nhn

∫
z>0

K2(z)[g(0) + C1 |hnz|]dz

=
1

nhn

[
g(0)

∫
z>0

K2(z)dz + C1hn

∫
z>0

K2(z) |z| dz
]

= O

(
1

nhn

)
.

Thus,

ĝn(s) =
∑
ℓ∈I

ĝn,ℓ(s) =
1

2

∑
ℓ∈I

gℓ(0) +O(hn) +Op

(√
1

nhn

)
For the numerator,

m̂n,ℓ(s)ĝn,ℓ(s) =
1

nhn

n∑
j=1

UjK

(
tj
hn

)
I(Sj ∈ Eℓ ∩ B(s, hn))︸ ︷︷ ︸
Q1

+
1

nhn

n∑
j=1

mS(Sj)K

(
tj
hn

)
I(Sj ∈ Eℓ ∩ B(s, hn))︸ ︷︷ ︸

Q2

,
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where Uj = Yj −mS(Sj). Using the fact that E(Uj|Sj) = 0, E(Q1) = 0, and the variance is

Var(Q1) ≤
1

nh2
n

∫
t>0

σ2
ℓ (t)K

2

(
t

hn

)
gℓ(t)dt

=
1

nhn

∫
z>0

σ2
ℓ (hnz)K

2(z)gℓ(hnz)dz

=
1

nhn

∫
z>0

σ2
ℓ (0)K

2(z)gℓ(0)dz +O

(
1

nhn

)
= O

(
1

nhn

)
.

For Q2, we have∣∣∣∣E(Q2)−
mℓ(0)gℓ(0)

2

∣∣∣∣ = ∣∣∣∣ 1hn

∫
t>0

mℓ(t)K(t/hn)g(t)dt−mℓ(0)gℓ(0)

∫
z>0

K(z)dz

∣∣∣∣
=

∣∣∣∣∫
z>0

mℓ(hnz)K(z)gℓ(hnz)dz −mℓ(0)gℓ(0)

∫
z>0

K(z)dz

∣∣∣∣
≤
∫
z>0

{[
mℓ(0) + C2hnz

][
gℓ(0) + C1hnz

]
−mℓ(0)gℓ(0)

}
K(z)dz

≤ [C1mℓ(0) + C2gℓ(0)]hn

∫
z>0

K(z)zdz + o(hn) = O(hn).

The varaince of Q2 is bounded via

Var(q2) ≤
1

nh2
n

∫
t>0

m2
ℓ(t)K

2

(
t

hn

)
gℓ(t)dt

=
1

nhn

∫
z>0

m2
ℓ(hnz)K

2(z)gℓ(hnz)dz

≤ 1

nhn

∫
z>0

{mℓ(0) + C2 |hnz|}2K2(z) {gℓ(0) + C1 |hnz|} dz

=
1

nhn

{
m2

ℓ(0)gℓ(0)

∫
z>0

zK2(z)dz +O(hn)

}
= O

(
1

nhn

)
Putting the terms Q1 and Q2 together, we have

m̂n,ℓ(s)ĝn,ℓ(s) =
1

2
mℓ(0)gℓ(0) +O(hn) +Op

(√
1

nhn

)
.
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As a result, we conclude that

m̂(s) =

∑
ℓ∈I m̂n,ℓ(s)ĝn,ℓ(s)∑

ℓ∈I ĝn,ℓ(s)

=

1
2

∑
ℓ∈I mℓ(0)gℓ(0) +O(hn) +Op

(√
1

nhn

)
1
2

∑
ℓ∈I gℓ(0) +O(hn) +Op

(√
1

nhn

)
=

1
2

∑
ℓ∈I mℓ(0)gℓ(0)

1
2

∑
ℓ∈I gℓ(0)

+O(hn) +Op

(√
1

nhn

)
=

∑
ℓ∈I mℓ(0)gℓ(0)∑

ℓ∈I gℓ(0)
+O(hn) +Op

(√
1

nhn

)
,

which completes the proof. □

Kernel Regression: Convergence on Knot with Nonzero Mass

ProofTheorem 4.

Let s ∈ V be a point where P (Sj = s) = p(s) > 0. Recall that the kernel regression can

be expressed as

m̂(s) =
1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ V ∩ B(s, hn))

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ V ∩ B(s, hn))

=
1
n

∑n
j=1 YjKhn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 YjI(Sj = s)

1
n

∑n
j=1Khn(Sj, s)I(Sj ∈ E ∩ B(s, hn)) +

1
n

∑n
j=1 I(Sj = s)

=
ε1,n(s) + ν1,n(s)

ε2,n(s) + ν2,n(s)
.

We look at each term individually and note that we have the edge components terms

identical to the proof of Proposition 5, so

ε1,n(s) = hn

{∑
ℓ∈I

mℓ(0)gℓ(0) +O(hn) +Op

(√
1

nhn

)}
= O(hn) +Op

(√
hn

n

)
,

ε2,n(s) = hn

{∑
ℓ∈I

gℓ(0) +O(hn) +Op

(√
1

nhn

)}
= O(hn) +Op

(√
hn

n

)
.
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For the terms on the knots, they are just a sample average, so

ν2,n(s) = p(s) +Op

(√
1

n

)
and similarly

ν1,n(s) =
1

n

n∑
j=1

(mS(s) + Uj)I(Sj = s)

= mS(s)p(s) +Op

(√
1

n

)
.

With the fact that Op

(√
1
n

)
dominates Op

(√
hn

n

)
, we conclude

m̂(s) =
O(hn) +Op

(√
hn

n

)
+mS(s)p(s) +Op

(√
1
n

)
O(hn) +Op

(√
hn

n

)
+ p(s) +Op

(√
1
n

)
=

O(hn) +Op

(√
1
n

)
O(hn) +Op

(√
1
n

)
+ p(s)

+
mS(s)p(s)

O(hn) +Op

(√
1
n

)
+ p(s)

=
O(hn) +Op

(√
1
n

)
p(s)

+O


O(hn) +Op

(√
1
n

)
p(s)


2

+mS(s)p(s)

 1

p(s)
+

O(hn) +Op

(√
1
n

)
p(s)2


= mS(s) +O(hn) +Op

(√
1

n

)
,

which completes the proof.

□

K Additional Simulation Results

In this section, we focus on the impact on the final regression performance when cutting the

skeleton into different numbers of disjoint components. We use the same simulated datasets

156



as in Section 3.6: Yinyang data, Noisy Yinyang data, and SwissRoll data. We mainly follow

the same analysis procedure, use 5-fold cross-validation SSE to assess the regression result

on each dataset, and, for each simulated dataset, repeat the procedure for 100 times as the

dataset is randomly generated. The only difference is that, during the skeleton construction

step, we segment the skeleton graph into different disjoint components using single-linkage

hierarchical clustering with respect to the Voronoi Density weights as described in Section

3.3.1. we then fit and assess the skeleton-based regression methods on the differently-cut

skeletons.

Vary Skeleton Cuts for Yinyang Data

In this section, we use the Yinyang data (Section 3.6.1) to study the influence of cutting the

skeleton into different numbers of disjoint components on the performance of skeleton-based

methods. We randomly generate the Yinyang 1000-dimensional data for 100 times and use

5-fold cross-validation to calculate the sum of squared errors (SSE) on each dataset. We fit

the skeleton-based methods in the same way as in Section 3.6 except that we fix the number

of knots to be 38 and cut the initial graph into different numbers of disjoint components (1

to 25) when constructing the skeleton. The medium 5-fold cross-validation SEEs across the

100 datasets with different numbers of disjoint components is plotted in Figure 34.

We see that the S-Lspline method is sensitive to the change in skeleton structure, and,

in the case of Yinyang data, since there are 5 true disjoint structures in the covariate space,

a cut of 5 leads to the best regression result. By the construction of the S-Lspline regressor,

an edge between two intrinsically different structures will let the estimation on one structure

to take unrelated information from the other structure and hence deteriorate the regression
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performance. For future research, incorporating edge weights into the S-Lspline regressor

may alleviate the interference between different structures. The S-Kernel regressor also

achieves the best performance when the skeleton is segmented into 5 disjoint components.

The skeleton-based kernel regression method demonstrates larger changes in performance

corresponding to the changes in skeleton segmentation when the bandwidth is large. This

is explicable as larger bandwidth allows more information from large distances, which are

more likely to be modified become non-informative as the segmentation changes. The S-

kNN regressor, differently, has best regression performance when the skeleton is left as a

fully connected graph. This may be due to the locally adaptive nature of the k-nearest-

neighbor approach that the regression result is accurate as long as the local neighborhood is

accurately identified.

Vary Skeleton Cuts for Noisy Yinyang Data

We then test the skeleton-based regression methods on the Noisy Yinyang data (Section

3.6.2) when the skeletons are constructed with different numbers of disjoint components.

Similarly, we randomly generate the Noisy Yinyang 1000-dimensional data for 100 times and

use 5-fold cross-validation to calculate the sum of squared errors (SSE) on each dataset. We

fix the number of knots to be 71 and construct skeletons with different numbers of disjoint

components. The medium 5-fold cross-validation SEEs across the 100 datasets with different

numbers of disjoint components is plotted in Figure 35.
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Vary Skeleton Cuts for SwissRoll data

In this section, we test the skeleton-based methods on SwissRoll data (Section 3.6.3)

with skeletons cut into different numbers of disjoint components. Similarly, we randomly

generate the SwissRoll 1000-dimensional data for 100 times and use 5-fold cross-validation to

calculate the sum of squared errors (SSE) on each dataset. We fix the number of knots to be

70 and construct skeletons with different numbers of disjoint components. The medium 5-fold

cross-validation SEEs across the 100 datasets with different numbers of disjoint components

is plotted in Figure 36.

We observe that the S-Lspline regressor is sensitive to the change in skeleton structure,

and the skeleton graph that is connected leads to the best regression result. This makes senses

as intrinsically the covariates lay around one connected manifold. The S-Kernel regressor

also has the best performance when the skeleton is constructed as one connected component.

After the initial increase in SSE with respect to the increase in the number of disjoint

components, the SSE by S-Kernel regressor stays relatively stable as more components are

separated out. The S-kNN regressor also has best regression performance when the skeleton

is left as a fully connected graph. Generally, the SSE by the S-kNN regressor increases

with the number of disjoint components, but for small number of neighbors, there can be a

decrease in SSE when the skeleton is cut into more disjoint components. One explanation

is that, as the response function has discontinuous changes, segmenting the covariate space

to be more fragmented can help with estimation in the region with discontinuous changes in

response.
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L Additional Real Data Examples

In this section, we present results on some additional examples from the COIL-20 dataset

(Nene et al., 1996), following the same procedure as in Section 3.7.1. Each dataset consists

of 72 gray-scale images of size 128 × 128 pixels as 2D projections of a 3D object obtained

through rotating the object by 72 equispaced angles on a single axis. The response is the

angle of rotation, and to avoid the circular response issue, we remove the last 8 images

from the sequence and only use the first 64 images from each dataset. We use leave-one-out

cross-validation to assess the performance of each method.

Cup Images Data

We start with a sequence of images of a cup, with some examples in Figure 38. The best

SSE from each method is listed in Table 2 along with the corresponding parameters. We see

that the S-Lspline method gives the best performance in terms of SSE, while the usual kNN

regressor also performs well on this data.

Sauce Box Image Data

We look at another sequence of images taken around a sauce box, with some examples in

Figure 40. The best SSE from each method is listed in Table 3 along with the corresponding

parameters. We see that in this case the usual kNN regressor give the best performance

in terms of SSE, while the S-Lspline method gives satisfactory results. The good perfor-

mance of kNN regressor in this case can be due to the distinctive marks on the box, which

makes neighbor search through Euclidean distance on the vectorized image inputs effective.

However, the proposed skeleton regression method shows stable performance across differ-
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ent object images and, by explicitly modeling the latent manifold structure, can give more

structured model on the response.
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σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

Figure 25: Adjusted Rand index performance of clustering methods on Yinyang data with different
standard deviation for added dimensions.

162



Figure 26: Comparison of clustering methods on Mix Mickey data d = 10, 100 with GMM included.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4 (e) Cluster 5

(f) Cluster 7 (g) Cluster 8 (h) Cluster 9 (i) Cluster 10 (j) Cluster 11

(k) Cluster 12 (l) Cluster 13 (m) Cluster 14

Figure 27: Skeleton structures of the clusters identified for the GvHD dataset in Section 2.6

Figure 28: Results on Manifold Mixture data with dimension 100.
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Figure 29: Comparison of adjusted Rand index using different similarity measures on Manifold
Mixture data with dimensions 10, 100, 500, 1000.

Figure 30: Results on Ring data with dimension 1000.

Figure 31: Comparison of the rand index using different similarity measures on Ring data with
dimensions 10, 100, 500, 1000. Medium of 100 repetitions.

Figure 32: Comparison of different similarity measures on all Zipcode Data.
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Figure 33: The clustering performance under different number of final clusters of the Olive oil data.

Figure 34: Yinyang d = 1000 data skeleton regression results with the number of knots fixed as
38 but segmented into varying numbers of disjoint components. The medium SSE across the 100
simulated datasets with each given parameter setting is plotted.

(a) S-Lspline (b) S-Kernel (c) S-kNN

Figure 35: Noisy Yinyang Regression fitted points d = 1000 with varying number of cuts results,
with number of knots fixed as 99.
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Figure 36: SwissRoll d = 1000 data skeleton regression results with the number of knots fixed as
70 but segmented into varying numbers of disjoint components. The medium SSE across the 100
simulated datasets with each given parameter setting is plotted.

Figure 38: A part of the cup images from the COIL-20 processed dataset. Each image is of size
128 pixels.

Method SSE Parameter

kNN 1147.2 neighbor=3
Ridge - -
Lasso - -

SpecSeries - -
S-Kernel 2561.5 bandwidth = 4rhns
S-kNN 4730.6 nenighbor = 3

S-Lspline 1073.4 -

Table 2: Regression results on cup images data from COIL-20. The best SSE from each method is
listed with the corresponding parameters used.
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Figure 40: A part of the sauce images from the COIL-20 processed dataset. Each image is of size
128 pixels.

Method SSE Parameter

kNN 955.6 neighbor=3
Ridge - -
Lasso - -

SpecSeries - -
S-Kernel 2998.8 bandwidth = 4rhns
S-kNN 5285.4 enighbor = 6

S-Lspline 1220.1 -

Table 3: Regression results on sauce images data from COIL-20. The best SSE from each method
is listed with the corresponding parameters used.
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