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Two Approaches to Extreme Value

The first method relies on deriving block maxima (minima) series
generating an “Annual Maxima Series” (AMS).

The second method relies on extracting values exceed a certain
threshold (falls below a certain threshold) for some period, getting
“Peak Over Threshold” (POT) values.

An Introduction to Statistical Modeling of Extreme Values
Stuart Coles, 2001.
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Examples of Extreme Values

Potential maximum daily loss across all stocks in portfolio

Potential intra-day maximum loss of a stock

Flood/earthquake level for civil engineering

Extreme weather conditions

.....
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Asymptotic Models for Maxima

Let X1, X2 . . . , Xn . . . be a sequence of i.i.d.-distributed random variables
with distribution F , and Mn = max{X1, . . . , Xn}.
In this case, we can have Pr{Mn < x} = F (x)n

In practice, F is unknown.

Estimate F ⇒ Fn

“Central Limit Theorem” on extreme values

Tail Dynamic Analysis of Financial Time Series
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Why Use Asymptotic Models for Extreme Values

Data collection/Sample

F̂ unreliable, worse for F̂n

The variation in the maximum behaves differently from variation in the
mean

Tail Dynamic Analysis of Financial Time Series
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Fisher–Tippett–Gnedenko (Extremal Types) Theorem

Theorem

If there exist sequences of constants {an > 0} and {bn} such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= G(x)

where G is a non-degenerate distribution function, then the limit distribution G
belongs to one of the following families:

G(x) = exp{−exp[−(x−b
a

)]},−∞ < x <∞ (Gumbel)

G(x) = exp[−(x−b
a

)−α], x > b; 0 otherwise (Fréchet)

G(x) = exp{−[−(x−b
a

)]α}, x < b; 1 otherwise (Weibull)

Generalized Extreme Value (GEV) Distribution:

G(x) = exp{− [1 + ξ(
x− µ
σ

)]−1/ξ},
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Generalized Pareto Distribution (GPD)

Theorem

Let X1, X2 . . . , Xn . . . be a sequence of independent and identically-distributed
random variables with distribution F , and Mn = max{X1, . . . , Xn}. Denote
arbitrary term in the Xi sequence by X, and suppose that the GEV distribution is
satisfied that, for large n,

Pr{Mn ≤ z} ≈ G(z) = exp{− [1 + ξ(
x− µ
σ

)]−1/ξ}
Then for large enough u (threshold), the distribution function of (X − u),
conditional on X > u, is approximately

H(y) = 1− (1 +
ξy

σ̃
)−1/ξ

where σ̃ = σ + ξ(u− µ), defined on {y : y > 0 and (1 + ξy/σ̃) > 0}

Tail Dynamic Analysis of Financial Time Series
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Maxima-GEV vs. POT-GPD

Maxima-GEV

Direct modeling of maxima, especially for high-frequency time series

Comparable performance with POT-GPD for large sample size

POT-GPD

More data used, more efficient

Sensitive to threshold

Tail Dynamic Analysis of Financial Time Series
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Autoregressive Conditional Fréchet (AcF) Model

Modeling Maxima with Autoregressive Conditional Fréchet Model
Zifeng Zhao, Zhengjun Zhang, Rong Chen, 2018
Journal of Econometrics

Tail Dynamic Analysis of Financial Time Series
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Motivation

The behavior of the underlying time series may change through time, and
the static approach cannot capture the dynamics of series.

Tail index of financial markets varies through time:

Recent studies on dynamic POT-GPD models, but little on dynamic GEV
models.
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Autoregressive Conditional Fréchet (AcF) Model

Let {Xit}pi=1 be a set of time series, and let {Qt} be univariate time series
of maxima that Qt = max1≤i≤pXit.

Model Qt conditionally with Fréchet distribution with parameters
(µt, σt, αt) ∈ Ft−1 = σ(Qt−1, Qt−2, . . .) where αt = 1/ξt, and the
parametrization:

Qt = µt + σtY
1/αt
t

where {Yt} is a sequence of i.i.d. unit Fréchet random variables.

The scale parameter σt should not be taken exactly as volatility of Qt
The conditional variance of Qt depends on both on σt and αt
However, σt can be closely related to the volatility process of the
underlying time series {Xit}pi=1

Tail Dynamic Analysis of Financial Time Series
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The scale parameter σt should not be taken exactly as volatility of Qt
The conditional variance of Qt depends on both on σt and αt
However, σt can be closely related to the volatility process of the
underlying time series {Xit}pi=1

Tail Dynamic Analysis of Financial Time Series



13/29

Model Specification

µt is set to be constant

log σt = β0 + β1 log σt−1 + η1(Qt−1)

logαt = γ0 + γ1 logαt−1 + η2(Qt−1)

β1, γ1 ≥ 0

η1(.) is assumed to be continuous increasing function of Qt−1, and η2(.)
is assumed to be continuous decreasing function of Qt−1 (clustering of
extreme events)

Further let η1(.), η2(.) to be exponential functions of the form a0exp(−a1x)

Simplified version of the widely used logistic function L
1+a0exp(−a1x)

Monotonicity, differentiability

Implies upper bound for {σt}, {αt}, does not affect flexibility but
facilitates numerical and techical tractability

Tail Dynamic Analysis of Financial Time Series
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Model Specification (Cont.)

The specific model is:
Qt = µ+ σtY

1/αt
t

log σt = β0 + β1 log σt−1 − β2 exp(−β3Qt−1)

logαt = γ0 + γ1 logαt−1 + γ2 exp(−γ3Qt−1)

where {Yt} is a sequence of i.i.d. unit Fréchet random variables,
0 ≤ β1 6= γ1 < 1, β2, β3, γ2, γ3 > 0.

Can include q1 autoregressive terms and q2 lagged terms of Qt

Increase complexity and instability, but not necessarily improve model
performance

Tail Dynamic Analysis of Financial Time Series
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Stationarity and Ergodicity

{σt, αt} form a homogeneous Markov chain in R2

Theorem

For an AcF with 0 ≤ β1 6= γ1 < 1, β2, β3, γ2, γ3 > 0, β0, γ0, µ ∈ R, the latent
process {σt, αt} is stationary and geometrically ergodic.

Since {Qt} is a coupled process of {σt, αt}, it is also stationary and ergodic.

Tail Dynamic Analysis of Financial Time Series
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Parameter Estimation

Denote all the parameters in the model by
θ = (β0, β1, β2, β3, γ0, γ1, γ2, γ3, µ)
Denote the space by
Θs = {θ|β0, γ0, µ ∈ R, β1, γ1 ∈ [0, 1), β2, β3, γ2, γ3 > 0}

The conditional p.d.f. of Qt given (µ, σt, αt) is

ft(θ) = f(Qt|µ, σt, αt) = αtσ
αt
t (Qt − µ)−(αt+1) exp{−σαt

t (Qt − µ)−(αt+1)}

Hence, with conditional independence, the log-likelihood function with
observations {Qt}nt=1 is

Ln(θ) =
1

n

n∑
t=1

lt(θ)

=
1

n

n∑
t=1

[logαt + αt log σt − (αt + 1) log(Qt − µ)− σαt
t (Qt − µ)−(αt+1)]

{σt, αt}nt=1 can be obtained recursively.

Tail Dynamic Analysis of Financial Time Series
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Parameter Estimation

True value of (σ1, α1) unknown

Doesn’t matter!

With 0 ≤ β1, γ1 < 1, the influence of initial value decay exponentially.
The asymptotic distribution does not depend on (σ1, α1). The consistency
and asymptotic normality of MLE do not depend on (σ1, α1).

Use static GEV estimation for initial value (burn-in)

Tail Dynamic Analysis of Financial Time Series
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Consistency and Asymptotic Normality of MLE

Let L̃n(θ) be the log-likelihood based on arbitrary initial values (σ̃1, α̃1)

Theorem (Consistency)

Assume the parameter space Θ is a compact set of Θs. Suppose the observations
{Qt}nt=1 are generated by a stationary and ergodic AcF with true parameter θ0

and θ0 is in the interior of Θ, then there exists a sequence θ̂n of local maximizer

of L̃n(θ) s.t. θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn, where τn = Op(n−r), 0 < r < 1
2

.

Hence θ̂n is consistent.

Proposition (Asymptotic Uniqueness)

Denote Vn = {θ ∈ Θ|µ ≤ cQn,1 + (1− c)µ0} where Qn,1 = min1≤t≤nQt, under
the conditions in previous Theorem, for any fixed 0 < c < 1, there exists a

sequence of θ̂n = arg maxθ∈Vn L̃n(θ) such that θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn,

where τn = Op(n−r), 0 < r < 1
2

, and

P(θ̂nis the unique global maximizer of L̃n(θ) over Vn)→ 1.

This proposition gives a partial answer to the asymptotic uniqueness of
MLE.Vn can be made arbitararily close to Θn by the fact that Qn,1 ↓ µ0

a.s. and by setting c close to 1.

Tail Dynamic Analysis of Financial Time Series
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Consistency and Asymptotic Normality of MLE

Theorem (Asymptotic Normality)

Under the consistency theorem, we have
√
n(θ̂n − θ0)→d N(0,M−1

0 ), where θ̂n is
the estimator in previous theorem and M0 is the Fisher Information matrix
evaluated at θ0. Further, the sample variance of plug-in estimated score functions

{ ∂
∂θ
lt(θ̂n)}nt=1 is a consistent estimator of M0.

The consistency and asymptotic normality theorem show that there always
exists a sequence θ̂n, which is a local maximizer of L̃n(θ), such that θ̂n is
consistent and asymptotically normal regardless of the initial values
(σ̃1, α̃1).

Tail Dynamic Analysis of Financial Time Series
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Simulations

Under factor model setting

Xit = fi(Z1t, Z2t, . . . , Zdt) + σitεit

With some mild conditions, the conditional distribution of maxima
Qt = max1≤i≤pXit can be well approximated by a Fréchet distribution.

Convergence of maxima in factor model

Xi = βiZ + σiεi, i = 1, . . . , p,
Z ∼ N(0, 1), βi ∼i.i.d. U(−2, 2), σi ∼i.i.d. 1

2
U(0.5, 1.5) + 1

2
U(0.75, 1.25), εi

i.i.d. t-distributions with degrees of freedom ν. Repeated 1000 times.
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Simulations

Estimation for conditional VaR of maxima

For 0 < q < 1, the conditional Value at Risk for time t, cV aRqt is
defined as the 1− q extreme quantile of Qt, given all past information
Ft−1

Xit = 0.009(βiZt + σiεit)
Zt ∼ N(0, 1), βi ∼i.i.d. U(−2, 2), σi ∼i.i.d. 1

2
U(0.5, 1.5) + 1

2
U(0.75, 1.25), εi

i.i.d. t-distributions with degrees of freedom νt
log νt = γ0 + γ1 log νt−1 + γ2 exp(−γ3Qt−1),
(γ0, γ1, γ2, γ3) = (−0.1, 0.9, 0.3, 5)
Train AcF on T1 = 1000, 2000, 5000, calculate next T2 = 100 Qt values.
Repeat the experiment 500 times for each combination

Tail Dynamic Analysis of Financial Time Series
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Simulations

Robust to mild dependence among εit

For each day, 100 εit are generated from 10 different multivariate
t-distributions of size 10, with moderate pairwise-correlations (≤ 0.5)
within each multivariate t-distribution.

Robust to heterogeneous εit

For each day, 100 εit are generated independently from 100 t-distributions
of degree of freedom ciνt, ci generated independently from U(0.8, 1)

Tail Dynamic Analysis of Financial Time Series
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Real Data Applications

Negative daily log-returns of S&P100 Index components from January 1,
2000 to December 31, 2014 (3773 obs).

Tail Dynamic Analysis of Financial Time Series
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Real Data Applications
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Implications for Tail-connectedness

Let the estimated tail indexes for the S&P100 data be {α̂St }
Similarly applied AcF to DJI30 data, and denote the etimated tail
indexes be {α̂Dt }

Overall correlation between {α̂St } {α̂Dt } is 0.93
Let α̂t = (α̂St , α̂

D
t ), let Σ̂ be the sample covariance matrix of α̂t based on

sample α̂Tt=1.
Use the ratio between the maximum eigenvalue of Σ̂ and the sum of all
eigenvalues as a measure of tail-connectedness. Rolling window of
36-months (about 756) days.

Tail Dynamic Analysis of Financial Time Series
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Post tail dynamic analysis

Apply AR(1) + GARCH(1,1) to each S&P500 component stock returns

On daily maximal pseudo-residuals

Test normality: Normal aggregates to Gumbel(µ, α), and exponential
of Gumbel is Fréchet with location 0, scale exp(µ), and tail 1/α.

Apply AcF to pseudo-residuals w/o manipulation

γ1 significant while β1 not. The aggregated maximal pseudo-residuals have
phenomena of volatility clustering and clustering of extremal values, and
hence the pseudo-residuals of GARCH(1,1) are not as random and
independent as normally believed.

Tail Dynamic Analysis of Financial Time Series



27/29

Post tail dynamic analysis

Apply AR(1) + GARCH(1,1) to each S&P500 component stock returns

On daily maximal fitted-volatilities

The ”market-wise” maximal volatilities of stock returns have its own
dynamics.

Tail Dynamic Analysis of Financial Time Series
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Other Related Works/Further Research

Construct pseudo-series (ghost data)
Get the max pseudo-residual and max fitted volatility at the given
time, multiply back for a pseudo-volatility. Apply AcF.
Magnified trends

Fama French industry classification

Other η functions for different types of data

Extension to light-tailed data

......
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Thanks
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