
GRAPH LAPLACIAN AND LINEAR SMOOTHER

1. Overview

Let Xi ∈ Rp, i = 1, . . . , n, and Xi ∼d P with density p(x). Let the observations

be xi. Choose kernel function K and bandwidth h > 0 Let S =

(
K
(xi−xj

h

))
i,j

be

the similarity matrix.

Let D be the degree matrix for S, a diagonal matrix with row sums of S. Let
Lrw be the random walk graph Laplacian defined as I−D−1W . In this form, when
we are thinking about Kernel Smoothing, then D−1S is actually the smoothing
matrix. Apply Lrw to the smoothing function estimates the bias of the smoothing,
and hence, deducting the estimated bias from the regression estimations, we can
get a new ”debiased” set of estimates. Let Ŷ = (D−1S)Y be the estimates after
kernel smoothing

Ŷ − LrwŶ = (I − (I −D−1S))Ŷ = (D−1S)(D−1S)Y

2. Simulation Experiments

Draw independent variables X from 2-dimensional Normal distribution

X ∼ Normal(µ,Σ), µ = (0, 0),Σ =

(
2 1
1 4

)
Then for the response, assume it follows the regression function:

Ytrue = m(X) = m((a, b)) = a2 cos(a) + b− b2 + ab

The observed responses are Y = Ytrue + ε where ε are random noises drawn from
Normal(0, 2).

In this experiments, the sample size for X is n = 1000, and Gaussian kernel is
used.

2.1. Assessing Bias.
To assess the bias of the smoothers, the generated X are fixed, while noises are
generated 1000 times independently, and hence 1000 sets of observations are generated
with the setting. The smoothing procedure is carried on each set of observations,
generating 1000 sets of predictions. The mean of the 1000 predictions are used to
analyze the bias.

2.2. Semi-supervised Setting.
To test the idea in Kernel Regression setting, m unlabeled points are drawn from
the same distribution as X.
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3. Kernel Smoothing

Let L = D−1S be the smoothing matrix, then the smoothed observations are
Ŷ = LY. Let Ŷ2 = LLY be the result after applying the square of the original
matrix to the observations. Let L2

elem be the element-wise squaring of matrix

L, and let Ŷel2 = L2
elemY be the result after applying the element-wise squared

smoothing matrix.

The results of the simulation experiments are:

Squaring the matrix, no matter using the correct matrix power or element-
wise squaring, the performance in terms of MSE is not better than the original
smoothing. This is compared based on the optimal bandwidth for each procedure.
The optimal bandwidth for the squared matrix LL is smaller than the original
smoothing matrix L, and the optimal bandwidth for L2

elem is really small.

However, noticeable is that element-wise squaring the matrix greatly smoothes
most of the values to 0.

In terms of bias, LL doesn’t make much improvement (there is improvement in
simulation1, but not the other two).The L2

elem reduces the bias in simulation2 but
not the others. The smoothing bias-reducing property of element-wise squaring
may come from the small bandwidth used.

4. Kernel Regression

Let there be n labeled samples X1, . . . , Xn with corresponding labels Y1, . . . , Yn.
Let there be m unlabeled samples A1, . . . , Am drawn from the same distribution as
Xi’s.

In this setting, let S be the m × n matrix with Sij = K
(ai−xj

h

)
. Let D be the

m×m diagonal matrix with row sums of S as the entries. Hence define the m× n
matrix L = D−1S and Kernel Regression Estimation gives Ŷa = LY where Y is the
column vector of the observed labels.

Since the smoothing matrix now is not necessarily a square matrix, we cannot
directly square such a matrix, hence a 2-step procedure is used:

1 First do the regular Kernel regression estimation and get the m predicted
labels Ŷa = LY where Y.

2 Treats the Ŷa’s as given labels and append them to the existing labels to
get Ȳ. Construct the m× (n+m) matrix S̄ such that Sij = K

(ai−xj

h

)
for

j ≤ n and Sij = K
(ai−aj−n

h

)
for j > n. Let D̄ be the degree matrix fro S̄.

Calculate the predictions as Ŷ
′

a = D̄−1S̄Ȳ.

The second step can be thought of as getting the Kernel smoothing matrix with the
(n+m)×(n+m) matrix between all the points from X and A combined, apply to the
combined labels Ȳ, and extract the last m terms. The final predictions are obtained
after two rounds of kernel smoothing in this procedure, so it is implicitly squaring
the smoothing matrix. However, in the second step, all the pairwise information
between the independent variables are used.
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However, for a matrix that is not square matrix, we can still directly do the
element-wise squaring. Again let L2

elem be the element-wise square of the kernel
regression matrix L.

The results of the simulation experiments are:

The two-step procedure, using the same bandwidth as the original smoothing
matrix, performs better in terms of MSE. However, in terms of bias, the two-step
procedure works better with the smaller bandwidth (the optimal bandwidth in
terms of MSE found in the smoothing setting).

The element-wise squared smoothing matrix performs really poor regarding MSE
and the biases. The nice graph from last time is unfortunately by some mistake...

4.1. Using two-step procedure to smooth the known labels. Thinking of
the second step as smoothing for the observed Y values, the performance of the
two-step procedure as smoothing is better in terms of bias, especially when using
the smaller bandwidth.

In the given setting, without additional manipulation, we have the smoothed
known labels as

Ŷi =

∑n
j=1K

(
||Xj −Xi||/h

)
Yj∑n

j=1K
(
||Xj −Xi||/h

) for i = 1, . . . , n

and the predictions for the unlabeled data as

Ŷal
=

∑n
j=1K

(
||Xj − al||/h

)
Yj∑n

j=1K
(
||Xj − al||/h

) for l = 1, . . . ,m

.

Then with the two-step procedure, the smoothed knwon labels become:

Ŷ
′

i =

∑n
j=1K

(
||Xj −Xi||/h

)
Yj +

∑m
l=1K

(
||al −Xi||/h

)
Ŷal∑n

j=1K
(
||Xj −Xi||/h

)
+
∑m

l=1K
(
||al −Xi||/h

)
=

∑n
j=1K

(
||Xj −Xi||/h

)
Yj +

∑m
l=1K

(
||al −Xi||/h

)∑n
j=1 K

(
||Xj−al||/h

)
Yj∑n

j=1 K
(
||Xj−al||/h

)∑n
j=1K

(
||Xj −Xi||/h

)
+
∑m

l=1K
(
||al −Xi||/h

)
and the predictions for the unlabeled data are

Ŷ
′

ak
=

∑n
j=1K

(
||Xj − ak||/h

)
Yj +

∑m
l=1K

(
||al − ak||/h

)
Ŷal∑n

j=1K
(
||Xj − ak||/h

)
+
∑m

l=1K
(
||al − ak||/h

)
=

∑n
j=1K

(
||Xj − ak||/h

)
Yj +

∑m
l=1K

(
||al − ak||/h

)∑n
j=1 K

(
||Xj−al||/h

)
Yj∑n

j=1 K
(
||Xj−al||/h

)∑n
j=1K

(
||Xj − ak||/h

)
+
∑m

l=1K
(
||al − ak||/h

)
which are re-weighted results of the known labels and the 1-step predictions. Does
such re-weighting has similar effect as renormalization that the density
of X is better controlled for?


