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Graph Laplacian & Linear Smoothers
On Nonlinear Dimensionality Reduction, Linear Smoothing and Autoencoding
Matrices obtained from local, spectral methods can be seen as an operator that
returns the bias from smoothing a function. Each of the NLDR methods considered
construct or approximate a matrix L = G(I −S) where G is a diagonal matrix and
S is a linear smoother. In this sense, L measures the bias of the prediction Sf
weighted by G. For example, the Diffusion Maps constructs the Nadaraya-Watson
kernel smoother S = D−1K where D is the degree matrix and K the kernel matrix.
The constructed embedding consists fo the right singular vectors corresponding to
the smallest singular values of LDM = I − S, which is also generally called the
random walk Laplacian.Laplacian Eigenmaps, or the unnormalized graph Laplacian
by another name, is LLE = DLDM = D(I − S), is a rescaling of the bias.

• Connection between the spectrum of linear smoothers and spectrum of
graph Laplacians?

Smoothers and penalized least squares
Linear Smoothers and Additive Models
There is a class of smoothers that can be characterized as solutions to penalized
least-squares, especially in the form:

||y − f ||2 + λf tKf

Since the penalization term is in quadratic form, only symmetric matrices K should
be considered. Also, the smoothing matrix S = (I + λK)−1 given the inverse is
well defined. Conversely, given a smoother S, can frame into penalization problem
as

||y − f ||2 + f t(S−1 − I)f

Graph Laplacian & Regularization/Penalization on Manifolds
Manifold Regularization: A geometric Framework for Learning from Labeled and
Unlabeled Examples

To incorporate intrinsic geometry of the manifold, can frame a regularization
problem as:

f∗ = argminf∈H
1

l

l∑
i=1

V (xi, yi, f) + γA||f ||2H + γI ||f ||2I

where the additional last term reflect the intrinsic structure of the data manifold.
A natural choice for ||f ||2I is

∫
x∈M ||∇Mf ||

2dPX(x) and by defining a new kernel k̃
on the manifold the above problem can be written as

f∗ = argminf∈H
1

l

l∑
i=1

V (xi, yi, f) + γ||f ||2H̃
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and given the Representor Theorem holds and we have f∗ =
∑n

i=1 αik̃(xi, .), the

penalty can be written in quadratic form as γαT K̃α where α is the vector of the
coefficients and K̃ is the Gram matrix with the new kernel. For the method in the
paper,

Connections between the three approaches:
Consistency results

• Linear smoothers: Nearest-neighbor-type smoothers in Stone (1977), Cubic
splines in Cox (1983) and Rice & Rosenblatt (1983), and kernel smoothers
in Gasser & Muller (1979).
• Graph Laplacian: Laplacian Eigenmap (Belkin), Diffusion Maps (Coifman

& Lafon), Ting, Berry, Trillos ...
• Manifold Regularization: Haven’t checked any consistency result yet

Transition between the fields:
When can a method in one approach be constructed/framed from another approach?


