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Beyond Empirical Risk Minimization: the lessons of deep learning
https://www.youtube.com/watch?v=J3-Bl36aVPs&feature=share

Get perfectly on the training set, so the empirical risk is zero, and the empirical
risk minimization framework is problematic.

E(L(f*,y)) < %ZL(f*(xi),yi) + bound

with the first term to be 0 and the bound need to be exact. The classical uniform
bounds do not work. However, thinking of 1-NN, interpolation (perfect fit on
training points) is allowed, and the smoothing methods can be applied for such
analysis.

weighted interpolated k-INN schemes with certain singular kernels are
consistent (converge to Bayes optimal) for classification in any dimension.
Interpolation is feasible with deep learning because of the phenomena of double
descent risk: When the raining error hits zero and keep adding parameters for
over-parametrization, the risk actually again descents.

Risk Consistency of Kernel Based Regression Methods
https://arxiv.org/pdf/0709.0626.pdf
http://web.eecs.umich.edu/~cscott/past_courses/eecsb98wil4/notes/17_svm_
consistency.pdf

For a given loss function L: Y x R — [0, 00)
RL(f) = Exy[L(Y, f(X))]
Ry =inf{RL(f)|f : ¥ = R}
Ry 7 =inf{RL(f)|f € F}

Definition. A loss L is called Lipschitz if for every y € ), L(y, .) is C-Lipschitz in
R where C does not depend on y.

Definition. X compact metric space. A kernel k£ on X is universal if its corresponding
RKHS F is dense in C(X) with respect to the supremum norm.

If k is universal kernel, then R} r =R} for any Lipschitz loss L. However, the
condition that X being compact is restrictive. Fortunately we do have the nice
result for Gaussian kernel:

Theorem. If k is a Gaussian kernel on X = R% and the loss L is Lipschitz, then
R} » =R}
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Theorem. Let (X1,Y1),...,(Xn,Yn) be n iid samples from X x Y. Let k be a
kernel on X with RKHS F such that R} » = R}. Let L : Y x R — [0,00) be a
Lipschitz loss for which Ly = supyeyL(y,0) < co. For kernel method find

. 1 &
n = in — > L(Yz, f(X3)) + Al 113
f arglj}g;lﬂﬂ (Y1, f(X3)) + Al fIIF

Assume supyex/k(z,x) = B < oco. Let A = N\, — 0 such that n), — oo as
n — oco. Then

RL(fn) - RZ —a.s. 0
for every distribution Pxy on X x ).

Theorem. Let X C R? be compact, let L be an invariant, convex loss of lower
and upper order p > 1 and let H be a RKHS of a universal kernel on X. Define
p* = max{2p,p?} and fir a sequence (\,) C (0,00) with A, — 0 and A2 n — 0.
Then fm)\n the minimizer of the empirical risk in RKHS H 1is L-risk consistent for
all probability distribution P with |P|, < cc.

For such L-risk consistency result, emphasize is on the behavior of the loss
function L:

e invariant
e convex
e well-controlled growth

Then about the risk, required conditions are:

o finite risk: need [y [f[?(y)d|P|(z,y) < oo
e unique minimizer
e approximation error is controlled: universal error

Relating RKHS and Graph Laplacian through Integral Operators
Reference: On Learning with Integral Operators
http://www. jmlr.org/papers/volumell/rosascolOa/rosascolOa.pdf

Integral operators play roles both in graph Laplacian and RKHS methods: What’s
the intuition/big picture analogy of integral operators? Think of integral as the dual
operator of differential operators (in graph Laplacian case)?

From Laplacian Eigenmap:

Ly, as the point cloud Laplacian
For data points z1,...,z, € M CRV:

. 1

Lin =———-( - B T — f(a;

000 = s (3 e ) 5600)

The (continuous) integral operator, which serves as a functional approximation
to the LBO Ay is defined as Ly, : L*(M) — L*(M)

LD = sz ([ 1160~ 1),


http://www.jmlr.org/papers/volume11/rosasco10a/rosasco10a.pdf
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where p is the uniform measure on M obtained from the volume form. The
uniform distribution is an essential assumption for this result in Belkin2008 and
essentially assumes that there is no information with the density and hence can
ignore the coupling of density and geometric structure.
In showing that the integral operator L., converges to A, the authors employs
the heat operator H, : L? — L2, which is the convolution with the heat kernel,
and hence also a form of integral operator. It has been shown that % and
Az share an eigenbasis and the proof for FigL; — EigAa goes by showing the

difference R; = — L; is relatively bounded.

Hence we can see that integral operator can help understand graph Laplacians.
To build on this, Rosasco et. al 2010 defined the following framework for graph
Laplacians:

Let W : & x X — R be a symmetric continuous weight function such that
0<e<W(x,s) <C,z,s € X. Note here W is not required to be positive definite,
but merely has positive entries. Let W be the gram matrix for data points in
X. Let D be the degree matrix, then the sample random walk graph Laplacian is
defined as L,, : C* — C"

L,=I-D'W

Let P be a probability measure on X, define the degree function as:

/WxsdP s)

and the operator L : L2(X, P) — L2(X, P)

LA W

(s)dP(s)

Integral operators are also present in kernel based methods:

RKHS
Let K be a symmetric PSD kernel such that sup, ¢y K(z,z) = ko < 00.

o = Ex[b(X..)] = [ KX, )dP()

jix = ;éwxw 1= [ kX JaPta)
Cxy =Ex y[(k(X,.) — px) @ (h(Y,.) — py)]
Coxy = =3 Y IK(Xi ) = ) @ (h(Yi, ) — i)

For RKHS we have jix —p pax > opeq [M(Cx — Cx)| = Op(n=1/?

Moreover, when we can define the integral operator corresponding to a centered
Gram matrix as Let K be the gram matrix and define the corresponding integral
operator Ly : L?(X, P) — L?(X, P).

(Lrf)(z /Kacs (s)dP(s)
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Then it has been shown that L is a Hilbert-Schmidt, positive self-adjoint operator
and

AMLk) = AMCx)
and in particular Lk is a trace-class operator and Tr(Lg) = > ;5 Ni(Lk) =
E||¢(X)|3, )
Moreover, define a linear (evaluation/sampling/restriction) operator T : H — H,
(Tf)(@) = (f,o(x))n = f(x)
and let T be the continuous adjoint of 7', then we can have

Cx =TT, Lg = TT*

Therefore we see the integral operators help build the tools for graph Laplacian
and for RKHS. For the estimation from finite sample, We want to assess

e to which extent can we use the gram matrix K to estimate L for RKHS
methods

e to which extent can we use the graph Laplacian L,, to estimate the integral
operator L

A major challenge of these goal is that L, and K, L,, and L operate on different
spaces!

L, and K are finite dimensional matrices and sends C* — C" (R™ — R"), but L
and Ly sends L*(X, P) — L*(X, P).

To overcome the difficulty, work on some intermediate spaces, RKHS H:

Integral operators for RKHS:

Let H be the RKHS associated with the given kernel K, and define the operators
Ty, T, : H — H given by

Ty = /X (6(x), I d(x)dP ()

T = = (00X, JudlX)

where ¢(x) = k(z,.) is the feature map associated with a point € X. Similarly
as written in the previous section, define the restriction/evaluation operator R, :
H — C™

Rof = (f(x1),-.., f(zn))
and the adjoint operator R} : C" — H that for (y1,...,yn) € C",

* 1 -
Rn(y17 o 7y7b) = E Z y1¢(X1)
i=1
Hence T,, = R} R, and K = R,R;. Similarly let Ry be the inclusion H —
L2(X, P) then Ty = R;LR?-L and Ly = RHR;{

Ty and L have the same spectra. possibly up to the zero, and have eigenvectors
related by a simple equation (Proposition 8 in Rosasco et. al 2010).

T, and K share eigenvalues up to some zeros and have eigenvectors related by
simple equations (Proposition 9).
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To characterize the connection between K and Ly, it suffices to connect T;, to
T For this purpose, the convergence in Hilber-Schmidt operator norm of 7}, to
Ty, is presented in Theorem 7.

Combining the pieces, the [ distance between the spectrum of Ly and K
is bounded in Proposition 10 and Proposition 11. And the bound on spectral
projection is shown in Theorem 12.

In sum, by studying K and Lk all in the common RKHS 7, the spectral
convergence is clearly shown through the framework of integral operators. This
framework can be easily adopted in this framework since the RKHS structure is
already given (with which we defined K and L), and the given RKHS fits nicely
with the framework of integral operators. The requirements for the framework to
work are

e The kernel k is a reproducing kernel (symmetric, PSD)
o k continuous, and sup,¢y k(x, ) = ke < 00
e X is locally compact separable metric space

To want to apply the integral operator framework to graph Laplacians. However,

for graph Laplacians, the provided ”kernel” %fzf) is not naturally a reproducing

kernel (not required to be positive semi-definite in the framework presented above),
and hence more work is required to construct an auxiliary RKHS to accommodate
the operators we interested in.

Integral Operators for Graph Laplacian
The definitions are restated here for ease of accessing:

Let W : & x X — R be a symmetric continuous weight function such that
0<ec<W(x,s) <C,z,s € X. Note here W is not required to be positive definite,
but merely has positive entries. Let W be the gram matrix for data points in
X. Let D be the degree matrix, then the sample random walk graph Laplacian is
defined as L : C* — C"

L=I-D'wW
Let P be a probability measure on X, define the degree function as:

m(z) = / W (x, $)dP(s)
X
and the operator L : L2(X, P) — L2(X, P)
W (z, s)

Lf)(z) = f(x —/7fsdPs

L) = flo) = [ S p(s)ap(s
To make the quantities clear, define the following functions:

W, : X =R W,(t) = W(a,t)

1n
n:X >R m, =— W,.
m m n; .
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Recall the integral operators for RKHS are defined with in a RKHS, so for now
assume there exists a RKHS H with bounded continuous kernel & such that
W, W,
Wy, —, —2 cH
m

My
W,
|—Illx <C VzeX
m

Under such assumptions, we can define the bounded integral operators Ly, Ay :
H—H

An = [ (o). Jus 2dP@)

Ly =1 — Ay
1 & W,
An - E Z<¢(mz)a ->'H ", Ln =1- An

i=1

In similar fashion to the RKHS case we can define restriction/evaluation operator
R,:H—C"

Different from the RKHS case, since an auxiliary H is used with the reproducing
kernel not the “natural kernel counterpart” VZ;, we need to define the adjoint

(extension) operator E,, : C" — H a little differently as:

I~ W
En(y17~"7yn) = ﬁzyz

T;
m )
i=1 n

(Y1,...,yn) €C"

Then we have

A, =E,R,, D'W =R,E,
Similarly define the infinite sample restriction and extension operator Ry and Ey
and can have Ay = Ey Ry, I — L = Ry Fy.

Ay, Ly, and L have simply related eigenvalues, up to zeros, and have eigenfunctions
related by simple equations (proposition 13).

Ay, L,, and L have simply related eigenvalues, up to zeros and have eigenfunctions
related by simple equations (Proposition 14).

It then remains to bound Ay — A,,. However, for such convergence, the structure
of the RKHS we assumed to exist earlier need to be specified.

If the weight function W is sufficiently differentiable, can choose the auxiliary
RKHS to be a suitable Sobolev Space. For the sake of simplicity, X is assumed
to be a bounded open subset of R? with a nice boundary (precise assumptions use
quasi-resolved boundary open set).

For given index s € N, the Sobolev space H? is
H* = {f € L*(X,dx)|D*f € L*(X,dz),V|a| = s}

where dx stands for the Lebesgue measure, and o € N? is multi-index. H® is a
separable Hilbert space with respect to the scalar product

(f, )1 = (f,9)L2(x ,da) + Z (D*f, D*g) 12(x dx)

|o|=s
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Let CJ*(X) be the set of continuous bounded functions such that all the standard
derivatives of order m exists and are continuous bounded functions, and this is a
Banach space with respect to the norm

1flley = supsex|f(@)| + Y supsex|(D*f)(x)|

le|=m

Recall that we assume X is a bounded open subset of R¢ with a nice boundary, and
for such dimension d we let the order for Sobolev space be s = |d/2] 4+ 1, and the
order for C}" be m = 0 so we are essentially looking at bounded functions. Then
we have

He O, I fllop < Comllf e

This Sobolev space H® with s = |d/2| + 1 is a RKHS with a continuous real
valued bounded kernel K°. Then modify the conditions on weight function W:
(0.1) W(z,t) >c>0 Va,t e X
(0.2) W e HT (X x X&)

With the defined Sobolev space as RKHS and weight function satisfying above, the
previous assumptions
W, W,
Wwa —,—— € H
m

my,
%1%
|=2|lu<C VoeX
m
are satisfied. (The choice of d + 1 here help control m — m,, in the Hilbert space in
order to use Hoeffding’s inequality, explained in Remark 19)
AH7]LH7A7HLTL S HS7 s = I_d/ZJ + 1
With such constructed RKHS structure, we can get

t
[|ILy, — Ll s = [|An — Anl|s < C\/;

with probability 1 — 2e~? in the Hilbert-Schimdt norm of operator in the Sobolev
space of H*® (Theorem 15).

The connections between the eigenvalues and eigenfunctions of I and L is given
in Proposition 21, and the relations between spectral projections in Proposition 22.
For these spectral results, since the operators are no longer self-adjoint, some more
spectral theory results are utilized for the proof.

In sum, when adapting the integral operator framework to graph Laplacians, the
convergence results are only shown under some restrictive conditions on the weight
function W and conditions on the input space X'. (0.1) essentially rule out k-NN
and e-neighborhood construction. Can try to generalize such framework.

Also can try apply such framework to some linear smoothers.

More essentially, the composition of restriction/evaluation operator with the
extension operator can have some intuition how those operators really do the work.



