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Graph Neural Network (GNN)

A graph G = (V, E,w) is a set of triplets with vertices V = {v,-};sil, edges

E C V x V, and edge weight function w : E — R. The graph has an adjacency
matrix A with the (i,j) th entry a; = w(v;, v;). Each node has a d-dimensional
feature, and we collect the feature vectors into a matrix H™ € R%*9. A common
GNN convolutional layer has the form

HoY =4 (H (A H™) W),

where 9 is the activation function, (A, H) is an aggregation mapping, and
Wo € RI*™ are the trainable weights.
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Graph Neural Networks (GNNs)

mij = fe(ht':hj:gt'j)

ha = fulhiy Y ms)

JEN;
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Expressive Power of GNN
Graph Isomorphism Test:

@ Two graphs are considered isomorphic if there is a mapping between the
nodes of the graphs that preserves node adjacencies.

@ Expressive power is whether can detect isomorphic graphs.

Graph 1 Graph 2

Figure: Image adopted from https:
//davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
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The Weisfeiler-Lehman (WL) Isomorphism Test

Precisely how hard the graph isomorphism problem is remains an open question in
computer science.

The 1-WL Algorithm:

@ For iteration i, we assign to each node a tuple L; , containing the nodes old
compressed label C;_1 , and a multiset of the nodes neighbors’ previous
labels.

@ Hash L; , to a new label G ,. Any two nodes with the same L; , will get the
same compressed label.

@ Partition the nodes in the graph assigned label and repeat above for N (the
number of nodes) iterations, or until there is no change in the partition of
nodes.

It produces each graph a canonical form. If the canonical forms of two graphs are

not equivalent, then the graphs are definitively not isomorphic. However, it is
possible for two non-isomorphic graphs to share a canonical form.
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The Weisfeiler-Lehman (WL) Isomorphism Test

Graph 1 Graph 2
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The Weisfeiler-Lehman (WL) Isomorphism Test

Graph 2
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The Weisfeiler-Lehman (WL) Isomorphism Test

Graph 2
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The Weisfeiler-Lehman (WL) Isomorphism Test

=] F = = £ DA
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The Weisfeiler-Lehman (WL) Isomorphism Test

Graph 2
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The Weisfeiler-Lehman (WL) Isomorphism Test

=] F = = £ DA

Presented by: Jerry Wei (UW Stats) Weisfeiler and Lehman Go Topological: Message Passil



The Weisfeiler-Lehman (WL) Isomorphism Test

VO &

Graph 1 Graph 2

The canonical form of the 2 7s, 1 8, and 2 9s.
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WL Test and GNN

GNN with injective aggregating function is equivalent in its expressive power to
the WL test (Xue et al., 2019).

However, limited in their capability of detecting graph structures such as triangles
or cliques (Chen et al., 2020).

Figure: Two graphs that cannot be distinguished by 1-WL, but have distinct clique
complexes (the second contains triangles).

Introduce simplicial complex for better expressive power.
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Background on Simplicial Complexes

Definition (simplicial complex)

Let V be a non-empty vertex set. A simplicial complex X is a collection of
nonempty subsets of V' that contains all the singleton subsets of V' and is closed
under the operation of taking subsets.

A member 0 = {v,..., w} € K with cardinality k + 1 is called a k-dimensional
simplex or simply a k-simplex.
E.g. O-simplices as vertices, 1-simplices as edges, 2-simplices as triangles, and so

on.

Definition (Boundary incidence relation)
We say o < 7 iff ¢ C 7 and there is no § such that 0 C § C 7.

Definition (Orientation)

An oriented k-simplex is a k-simplex with a chosen order for its vertices. An
oriented k-simplex is positively oriented if its vertices form an even permutation
and negatively oriented otherwise.

Presented by: Jerry Wei (UW Stats) Weisfeiler and Lehman Go Topological: Message Passil 18/44



Hodge Laplacian

The oriented boundary relations <, < _ can be encoded by the signed boundary
matrices (or incidence matrix) By € R-1*5 has entries

1, if 7 <4 o
Bk(i,_j)z —]., ifT;%—O'j
0, otherwise

where dim (o) = k,dim (7;) = k — 1, and S denotes the number of simplices of
dimension k.

Definition (Hodge Laplacian)

The k-th Hodge Laplacian of the simplicial complex, a diffusion operator for
signals over the oriented k-simplices, is defined as

Ly = B{ Bk + Bx41BL11

Note that Ly gives the well-known graph Laplacian.
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Simplicial WL (SWL) Test

Steps of SWL in the most general sense:

@ Given a complex I, all the simplices o € K are initialized with the same
colour.

@ Given the color ¢! of simplex o at iteration t, we compute the color of
simplex o at the next iteration ct*1, by perfectly hashing the multi-sets of
colors belonging to the adjacent simplices of o.

© The algorithm stops once a stable coloring is reached. Two simplicial
complexes are considered nonisomorphic if the color histograms at any level
of the complex are different.

Key: what simplices are considered to be adjacent
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Types of Adjacencies

Definition (Adjacent Simplices )

Consider a simplex o € K. Four types of adjacent simplices can be defined:
@ Boundary adjacencies: B(o) = {7 |7 < o}.
@ Co-boundary adjacencies: C(0) = {7 | o < 7}.
@ Lower-adjacencies: N (o) = {7 30,6 <7 A <o}
Q Upper-adjacencies: Ny(o) = {7 |34, 7 <d Ao <4}

The boundary simplices of an edge: its vertices

The co-boundary simplices of a vertex: the edges connected with
The lower-adjacent edges: share a vertex

The upper adjacencies between vertices: part of the same line
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The Multisets in SWL

Definition
Let ct be the coloring of SWL for the simplices in K at iteration t. We define the
following multi-sets of colors, corresponding to each type of adjacency:

cs(0) = {{er | 7 € B(o)}}.

cc(o) = {{er | T €C(o)}}-

c(0) = {{(er, o) | 7 € Ni(0)})-
ci(o) = (e, cour) | 7 € Na(o)}}-

0096
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SWL Update Rule

The SWL update rule with the complete set of adjacencies:

¢t = HASH {ct, ch(0), c&(0), cf(0), ck(0)}

SWL with HASH (cg, cs(0), c{(o)) is as powerful as SWL with the generalized
update rule HASH (cg, cg(a), ct(a), ¢ (o), c{(a)).

Reduces to WL when applied to graphs and only considers vertex coloring.
“this result comes from a (theoretical) color-refinement perspective and it does
not imply that the pruned adjacencies cannot be useful in practice.”
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Link the Expressive Power of WL and SWL

Definition

The clique complex of a graph G is the simplicial complex /C with the property
that if nodes {vp, ... vk} form a clique in G, then simplex {vp,...v} € K. In
other words, every (k + 1)-clique in G becomes a k-simplex in K. This is called a
lifting transformation.

SWL with a clique complex lifting is strictly more powerful than WL.

As illustrated by the previous example:
n
I/
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Link the Expressive Power of WL and SWL

SWL is not less powerful than 3-WL.

Figure: Rook’s 4x4 graph and the Shrikhande graph: Strongly Regular non-isomorphic
graphs with parameters SR(16, 6,2,2). SWL can distinguish them: only Rook’s graph
(left) possesses 4 -cliques (orange) and thus the two graphs are associated with distinct
clique complexes. The 3-WL test fails to distinguish them.

26 /44
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Message Passing Simplicial Networks (MPSN)

Message passing model using the following message passing operations based on
the four types of multisets. For a simplex o in a complex K we have:

mi (o) = AGGep(0) (Mg (B, hL))
m& (o) = AGG ec(o) (M (b, hL))
M) = AGG e, oy (M, (B B )

mit (o) = AGG en, (o) (My (5, L, RS L)) -

o iy HoldT

and the update operation takes into account these four types of incoming
messages and the previous color of the simplex:

BT = U (B (o). mi(). mE (), mEH ()
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Expressive Power of MPSN

MPSNs with sufficient layers and injective neighborhood aggregators are as
powerful as SWL.

A\

Corollary

There exists an MPSN that is more powerful than WL at distinguishing
non-isomorphic graphs when using a clique-complex lifting.

In particular, based on previous Theorem, it is sufficient for such an MPSN to use
boundary and upper adjacencies.
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Relation to Spectral Convolutions

GNNs are known for their relationship with spectral convolution operators on
graphs obtained via graph Laplacian (Hammond et al., 2011).

Analogously to this, MPSNs generalize certain spectral convolutions on graphs
derived from the higher-order simplicial Hodge Laplacian

Theorem 12. MPSNs generalize certain spectral convolution operators (Ebli et al.,
2020; Bunch et al., 2020) defined over simplicial complexes.
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Expressive Power by Linear Regions

The number of linear regions using piece-wise linear activations has been used to
study conventional neural networks.

SCNN

Figure: A 2D slice of the input feature spaces of GNN, SCNN, MPSN layers with
So = 51 = 3,5 =1 (the complex is a triangle), do = di = d» = 1, m = 3, colored by
linear regions of the represented functions, for a random choice of the weights.

Presented by: Jerry Wei (UW Stats) Weisfeiler and Lehman Go Topological: Message Passi 32/44



Graph Neural Network (GNN)

The graph has an adjacency matrix A. Each node has a d-dimensional feature,
and we collect the feature vectors into a matrix H" € R%*9_ We consider a
GNN convolutional layer of the form

Hout _ 'l/) (H (A, Hin) WO) ,

where 9 is the entry-wise ReLU, H(A, H) is an aggregation mapping, and
Wo € RI*™ are the trainable weights.
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GNN Linear Regions

Theorem (Number of linear regions of a GNN layer)

Consider a graph G with Sy nodes, node input features of dimension d > 1, and
node output features of dimension m. Suppose the aggregation function H as
function of H is linear and invertible. Then, the number of linear regions of the
functions represented by a ReLU GNN layer has the optimal upper bound

e (57

So

To compare: the optimal upper bound for a standard dense ReLU layer without

biases with d inputs and m outputs is 22;:01 ( m,-_ 1 >
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Simplicial Complex Neural Networks (SCNNs)

Consider a version of the model in Ebli et al. (2020) using only the first power of
a Laplacian matrix, generically denoted here by M, :

H" = (MoH*W,), n=0,...,p

where the features on simplices of different dimensions n=0,1..., p are
computed in parallel.

Definition (Number of linear regions for an SCNN layer)

Consider a p-dimensional simplicial complex with S,n simplicies for n =0,1,...,p.
Suppose that each M, is invertible. Then the number of linear regions of the
functions represented by a ReLU SCNN layer has the optimal upper bound

P ol m, —1 >
RSCNN:H<2Z ( "I. ))
n=0 i=0

where, for each of the n-simplices, d, is the input feature dimension and m, is the
number of output features.

v
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MPSN Formulation

For a p-dimensional complex, denote the set of n-simplices by S, with S, = |S,,|.
Denote the n-simplex input feature dimension by d,, and the output feature
dimension by m, =m,n=0,...,p.
We consider an MPSN layer with

@ linear message functions

@ sum aggregation for all messages

@ an update function taking the sum of the messages followed by a ReLU
activation

For each dimension n, the output feature matrix H3"t equals:

IZJ (MnH:,n Wn + UnH,17n_1 Wn—l + OnH,lE,_l Wn+1) )

where 1) is an entry-wise activation, W, € R%*™ are trainable weight matrices
and M, € R5*5 {J, € R%*5-1 and O, € R>*51 are some choice of
adjacency matrices for the simplicial complex.
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MPSN in Standard Form

Roth's lemma (Roth, 1934) states
vec (M,H* W,)) = (W, @ M,) - vec (HI" )

where vec denotes column-by-column vectorization and ® the Kronecker product.
Using Roth's lemma and concatenating over n we can write as

Hot = o (WH™ ),
H" = vec ([H™ [H]--- | HP]) € RY, N = 3°P_; Soda,
Hout — yec ([ngt |Hout | ... | Hg“t ]) eERM M= Zi:o S,m, and
WOT®M() W1T®Oo

W, @ Uy W) @M W, ®@ 0 N
W= Wiel, WeoM, WSeo, | €R
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MPSN Linear Regions
Theorem (Number of linear regions of an MPSN layer)

With the above settings, the maximum number of linear regions of the functions
represented by a ReLU MPSN layer is upper bounded by

Sn

P dp—1+dp+dpr1—1 1
o
Rvpsy < H 2 Z ( ; ) 9

n=0 i=0

where we set d_; = dp1 = 0. We also note the 'trivial’ upper bound, with
N:=3"F_,Snd, and M :=>"_S,m,

N—1
M-—-1
Rvpsn < 2 g < 7 ) :
Jj=0

Moreover, if rank ((Op).) > rank ((M,).) for any selection C of rows and
dny1 > dn, forn=0,...,p— 1, then for networks with outputs Hg"* , ... H3""
we have

Ruvpsn > Rsonn
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Strong Regular Graphs
Strongly Regular (SR) graphs represent 'hard’ instances of graph isomorphism, as
pairs thereof cannot provably be distinguished by the 3-WL test

— GIN/WL/ 3-WL @ MLP-sum mm SIN

10°

TG

10-2-
- | | |
T HN 1 I |
'L"L\ c,@ a,.b‘\ Q,P‘\ Q;.\\ @iﬁ\ gg\ bub\ q,.b'\
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Figure: Failure rate on the task of distinguishing SR graphs; logscale, the smaller the
better. GIN fails to distinguish all graph pairs in all families.
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Edge-Flow Classification

Synthetic flow as shown in the figure below.

Figure: Two samples from the two different classes of trajectories. The two trajectories
correspond to approximately orthogonal directions in the space of harmonic functions of
L, associated with the two holes.

Ocean drifter data with trajectories around the island of Madagascar between
years 2011-2018 with the task to distinguish between the clockwise and
counter-clockwise flows around the island.
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Edge-Flow Classification

Table 1. Trajectory classification accuracy. Models with triangle
awareness and orientation equivariance generalise better.

Method

Synthetic Flow

Ocean Drifters

Train Test Train Test
GNN Lg-inv 63.9+24 61.0+42 70.1+£2.3 63.5+6.0
MPSN Lp-inv~ 83.2+5.1 85.3+5.8 84.6+4.0 71.5+4.1
MPSN - ReLU 100.0+0.0 50.0+0.0 100.0+0.0 46.5£5.7
MPSN - 1d 88.0+3.1 82.6+3.0 94,609 73.0+2.7
MPSN - Tanh 97.940.7 952418 99.7+0.5 72.5+0.0
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Real-World Graph Classification

Table 2. Graph classification results on the TUDatasets benchmark.
The table contains: dataset details (fop). graph kernel methods
(middle), and graph neural networks (bottom).

Dataset ‘ Proteins NCIl IMDB-B  IMDB-M RDT-B RDT-M5K
Avg A 274 0.05 392.0 305.9 248 21.8
Med A 21.0 0.0 119.5 56.0 110 11.0
RWK 59.640.1 =3 days N/A N/A N/A N/A
GK (k=3) 71.4+£0.31 625403 N/A N/A N/A N/A
PK 737407 825405 N/A N/A N/A N/A
WL kernel 75.0£3.1 86.0£1.8 738439  509£38  BLO+£31 525421
DCNN 61.3+1.6 56.6+1.0 49.1+14 335414 N/A N/A
DGCNN 75.5409 744405  70.04£0.9  47.8409 N/A N/A
IGN 76,6455 743427 720455 487434 N/A N/A
GIN 762428 827417 751451 523428 924425  57.5+1.5
PPGNs 77.2+47 8324111 73.0£58  50.543.6 N/A N/A
Natural GN | 71.7£1.0  824+1.3  73.54£2.0 51.3£15 N/A N/A
GSN 76.6£5.0 835+£20 778433 543£33 N/A N/A

SIN (Ours) ‘ 76.5+34 828422 756432 525430 922410 573416
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Thanks for listening
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