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Subspace Clustering Problem

High-dimensional data pose challenges to classical clustering methods

Key observation: Data in a class or category lie in a low-dimensional subspace
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Subspace Clustering Problem

High-dimensional data pose challenges to classical clustering methods
Key observation: Data in a class or category lie in a low-dimensional subspace

Examples: rigidly moving object in a video

f = e

The video has frames f : 1,..., F, and a set of N feature points {x; € R2}V | is
tracked across the frames. For analysns, each feature trajectory y; is taken as a
data point, where y; is obtained by stacking the feature points xz in the video as

[Xll ’ X2/ v XFI] € R2F
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Subspace Clustering Problem

Goal:

@ find the number of subspaces and their dimensions

@ find a basis for each subspace

@ group the sample points into subspaces
Remark: Extension of traditional clustering: clustering and dimension reduction
simultaneously

@ Rigid motion: an affine subspace of dimension at most 3

@ Images of a subject with fixed pose and varying illumination: lie close to a
linear subspace of dimension 9.
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Prior Work on Subspace Clustering

o lterative methods Alternate between assigning points to subspaces and
fitting a subspace to each cluster. (K-subspaces, Median K-flats)

o Algebraic approaches Based on factorization of the data matrix. (GPCA)

o lterative statistical methods Parametric assumption on data distribution,
iterate between clustering and subspace estimation by EM algorithm.
(Random Sample Consensus)

o Information-theoretic statistical approaches Minimizes the
information-theoretic cost to fit a mixture of degenerate Gaussian to the
points, up to a given distortion. (Agglomerative Lossy Compression)

@ Spectral clustering-based methods Construct a similarity graph based on
data information and then apply spectral clustering. (Local Subspace Affinity,
Low-Rank Subspace Clustering) Sparse Subspace Clustering (SSC)
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Notations

Let {S/}7_; be an arrangement of n linear subspaces of dimensions {d;}_; lying
in RP.

Let {y;}, be the collection of N data points that are free of noises and lie in the
union of the n subspaces.

Let N, be the number of samples points in subspace S; and the data matrix

Y=[y,....yw]=[Y1,..., YsT

where Y; € RP*Ni is a matrix of all the points in S; with N; > d; and T is an
unknown permutation matrix.
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Self-expressiveness property

Definition

Each data point in a union of subspaces can be efficiently reconstructed by a
combination of other points in the dataset.

Subspace-Sparse Representation: represented by a few other points in the
same subspace
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Self-expressiveness property

Definition

Each data point in a union of subspaces can be efficiently reconstructed by a
combination of other points in the dataset.

Subspace-Sparse Representation: represented by a few other points in the
same subspace
Specifically, each data point y; € Uj_;S; can have the representation

Yi=Yc,c;i=0

where ¢; = (ci1, Cjo, ..., civ) T is the vector of constant coefficients
Goal: ¢; has a few non-zero entries corresponding to data points in the same
subspace as y;
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Sparse Optimization Problem

The optimization problem:
min ||C,‘||q s.t. yi=Yc,c; =0
where ¢; is a N dimensional vector of constants on the weights for the other data

points and ||.||4 is the /; norm.
Ideally, want to use fy norm, but is NP-hard
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Sparse Optimization Problem

The optimization problem:
min ||C,'||q s.t. yi= ),C,'7 Cij = 0

where ¢; is a N dimensional vector of constants on the weights for the other data
points and ||.||4 is the /; norm.
Ideally, want to use fy norm, but is NP-hard

Use / norm the convex problem is: Forall i=1,... N,
min|[cil|1 s.t. yi = Yci,ci =0
or in matrix form,

min||C||; s.t. Y = YC, diag(C)=0

where C = [ci, ..., cy] € RV*N is the matrix whose i-th column corresponds to
the representation coefficient for y;.
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Clustering using Sparse Coefficients

The optimization gives the sparse coefficient matrix C as the output.
Use the matrix to construct a graph, and apply spectral clustering gives the final
clustering result.

Weighted graph G = (V, £, W), where the N data points compose the vertices V,
and £ C V x V denotes the set of edges between nodes, W denotes the weights
for the edges.

W =I[C|+|C|", W; = |c;| + [cl.
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Sparse Subspace Clustering Algorithm

Algorithm : Sparse Subspace Clustering (SSC)
Input: A set of points {y;}", lying in a union of n linear subspaces {S/}7_;.
1 Solve the sparse optimization program

2 Normalize the columns of the resulting coefficients matrix C as ¢; + m
3 Form a similarity graph with N nodes representing the data points. Set the
weights on the edges between the nodes by W = |C| + |C|"

4 Apply spectral clustering to the similarity graph.

Output: Segmentation of the data: Y1, Ys,..., Y,
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Subspace-Sparse Recovery Theory

Subspace-Sparse Representation: represented by a few other points in the
same subspace

Definition (Independent Subspaces)

A collection of subspaces {S;}"_, is said to be independent if
dim(®7_,S;) = >, dim(S;) where & denotes the direct sum operator.

Independent Subspaces
Z
S3 y

S

Sy
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Subspace-Sparse Recovery Theory

Theorem (Independent Subspaces Recovery)

Consider a collection of data points drawn from n independent subspaces {S;}"_;
of dimensions {d;}?_,. Let Y; denote N; data points in S;, where rank(Y;) = d;,

and let Y_; denote data points in all subspaces except S;. Then, for every S; and
every nonzero y in S;, the I;-minimization program

H

for g < 0o, recovers a subspace-sparse representation, i.e., c* # 0 and c* =0

c* . c
L_*} = argmin sit. y=1Y: Y_i [C—}

q
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Practical Extension: Data Nuisances

Data points contaminated with sparse outlying entries and noise
yi=y +e +2

where y? is the error-free part of observation and lies perfect on the underlying
subspace, €2 € RP is sparse outlying entries, and z° € RP is the noise component.

Utilizing self-expressiveness property of y?

yi:ZCU_)/j+ei+zi

#i
_ a0 § 0
e —=e — c,-jej
J#i
0 E 0
Zi = Z; — C,JZJ
J#i
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Practical Extension: Data Nuisances

Let matrices E and Z have e; and z; as columns, we have the matrix
representation:

Y=YC+E+2Z, diag(C)=0
And hence the optimization program for sparse representation becomes

. )\z
min||Cl[x + Ael[Ellx + 57 11Z]]7
st. Y=YC+E+Z, diag(C)=0
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Practical Extension: Affine Subspace

Data point y; in an affine subspace S; with dimension d; can be written as an
affine combination of d; 4+ 1 other points from S;.

yi=Ye,ci=01"T¢ =1

where ¢; has d; + 1 nonzero entries corresponding to points also in S;. The more
general program:

. Az
mmIICII1+AeHEII1+7|IZII2F
st. Y=YC+E+2Z, diag(C)=0, 17C=1"
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Real Data Experiments: Motion Segmentation

Dataset: Hopkins 155 dataset. Video sequences along with the features extracted
and tracked in all the frames.

+ EEEA

The video has frames f : 1,..., F, and a set of N feature points {x; € R?}¥, is
tracked across the frames. For analysis, each feature trajectory y; is taken as a
data point, where y; is obtained by stacking the feature points xz in the video as

1T T T 2F
Yi =[x, X0, xg] T €R

120 videos of two motions (N = 266 and F = 30)
35 videos of 3 motions (N = 398 and F = 29)

The most general version of the SSC is implemented. With/without PCA as
preprocessing.
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Clustering error (%) of different algorithms on the Hopkins 155 dataset

’ Algorithm H SSC \ LSA \ LRSC \ K-Subspace ‘
2 Motions, without PCA

Mean 2.23 | 20.88 | 3.98 28.42

Median 0 14.72 0 33.72
3 Motions, without PCA

Mean 5.78 | 21.09 | 7.96 32.27

Median 0.95 | 22.81 | 3.40 29.62
2 Motions, with PCA

Mean 2.32 | 3.01 3.89 19.78

Median 0 0.25 0 1.62
3 Motions, with PCA

Mean 5.78 | 5.19 7.88 21.34

Median 0.95 | 1.11 3.39 3.19
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Discussion

Summary
@ SSC algorithm
@ Guarantee for obtaining Subspace-Sparse representation
°

Practical Extensions

Real application on motion segmentation
Advantages:
@ Deal with noises, sparse outlying entries, and affine subspaces directly
@ Can deal with subspaces with different unknown dimensions
Further Problem:
@ Subspace-sparse recovery guarantee for corrupted data
@ Theory for graph connectivity
Application when number of clusters unknown

°
@ Nonlinear extension
]

Application to very large dataset
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Question?

DA™
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Graph Connectivity

For subspaces of dimensions greater than or equal to 4, under odd distribution of
data, it is possible that points in the same subspace form multiple components.

Consider a regularization term

N
ICllro=_ I(lI€'ll2 > 0)
i=1

where ¢’ denotes the i-th row of the matrix C.
The convex relaxation

N
IClra =" €]
i=1
The optimization program to consider is

min||Clls + A/ |C|l,1 s.t. Y = YC,diag(C) =0
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Definition (Disjoint Subspaces)

A collection of subspaces {S;}"_, is said to be disjoint if every pair of subspaces
intersect only at the origin. In other words, for every pair of subspaces we have
dim(S; & S;) = dim(S;) + dim(S;), where & denotes the direct sum operator.

To characterize two disjoint subspaces, we can have:

Definition (Smallest Principal Angle)

The smallest principal angle between two subspaces S; and S; , denoted by 0j; , is
defined as

Tv:
iRy

cos(0j) = maxy, ins, v, insjm
i j
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Subspace-Sparse Recovery Theory

For Disjoint subspaces, need to study points in the intersection of subspaces. Let
x be a non-zero vector in the intersection of S; and ®;4;S;. Let

argminl|al|; s.t. x=Y;a

a;

a_; = argmin||a|ly s.t. x=Y_;a

Theorem

Consider a collection of data points drawn from n independent subspaces {S;}!_;
of dimensions {d;}?_,. Let Y; denote N; data points in S;, where rank(Y;) = d;,
and let Y_; denote data points in all subspaces except S;. The |} minimization

H

recovers a subspace-sparse representation, i.e., ¢* # 0 and c* = 0 if and only if

stoy=[Y; Y| L‘:}

[C*}

= argmin
*

= 1

Vx € §iN(@j£S)), x #0 = ||aj|l1 <|la—i|l1
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Parameter Choice

fte = minimaxiil|yill1, 1z = minimax;i.i|y! ;|

The choose \e > ae/pie, Az > @/, with e, > 1.

Proposition

Consider the optimization program with noise and sparse outlying entries.
Without the noise term Z, if A\ < 1/u., then there exists at least one data point
yi for which in the optimal solution we have (c;, e;) = (0,y,). That is, the data
point is taken entirely as outlying entries and is not represented as combination of
other data points. Similarly, without the sparse outlying term E, if A\, < u,, then
there exists at least one data point y, for which (¢;, z;) = (0, y;).
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Face Clustering Results

Algorithm SSC LSA | RANSAC [ LRSC | KSubspace
2 Subjects
Mean 1.87 | 33.47 37.45 11.41 45.41
Median 0 46.09 39.06 11.25 46.88
Time 57.5 | 13.7 4240.4 2.0 149.2
3 Subjects

Mean 3.30 | 53.03 49.39 13.97 59.18
Median 1.04 | 51.06 50.52 13.87 59.90
Time 81.1 | 195 6815.0 31 536.0

5 Subjects
Mean 432 [58.82 62.10 21.58 67.59
Median 2.50 | 57.19 63.12 21.56 67.19
Time 1358 | 29.4 | 127213 | 11.2 1115.9

8 Subjects
Mean 5.89 [ 5741 787 34.73 72.00
Median 4.59 | 57.81 5415 34.37 71.58
Time 216.0 | 65.0 | 15901.7 | 19.5 2030.1

10 Subjects
Mean 7.40 ] 56.04 71.4 51.06 72.03
Median 5.63 | 60.47 725 50.78 72.34
Time 326.0 | 95.3 16393.7 59 3248.0
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ADMM Procedure

Algorithm 2: ADMM Procedure to solve sparse-optimization program
Initialization: Set maxlter = N and errThres = . k =0, Terminate = False.
Initialize C(, E©@_ A©) A©) §0) to zero.
While (Terminate == False) do
1 Update Ak+1) by solving
A YTY+4pl+p11 T AKHD — )\ ¥y T(Y—ECD) 1 p(11 7+ €)Y -1 T - AK)
Update Ck+1) = J — diag(J), where J = T1 (Ck+1D) + A /p),
Update E(+1) = T%(YA(”U -Y),
Update A1) = Al 4 p(AlK+D) — Clk+1)),
Update (-+1) = §(F) 4 p(AKH1T] — 1),
if (max{HA(k'H) _ C(k+1)||oo; ||A(k+1)T1 _ 1”007 ||A(k+1) _
AR ||, [|ECH) — ER)|| ) < e or k + 1 > maxlter):

Terminate = True
end if

SOk W N

7 k=k+1,
end while Output: Sparse coefficient matrix C = C)
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