Sparse Subspace Clustering: Algorithm, Theory, and Applications Elhamifar, E. and Vidal, R.

Presentation for Stat 572

Jerry Wei Mentor: Vincent Roulet

Department of Statistics University of Washington

Subspace Clustering Problem

High-dimensional data pose challenges to classical clustering methods

Key observation: Data in a class or category lie in a low-dimensional subspace

Subspace Clustering Problem

High-dimensional data pose challenges to classical clustering methods

Key observation: Data in a class or category lie in a low-dimensional subspace

Examples: rigidly moving object in a video

The video has frames $f:1,\ldots,F$, and a set of N feature points $\{\mathbf{x}_{fi} \in \mathbb{R}^2\}_{i=1}^N$ is tracked across the frames. For analysis, each feature trajectory \mathbf{y}_i is taken as a data point, where \mathbf{y}_i is obtained by stacking the feature points x_{fi} in the video as

$$\mathbf{y}_i \equiv [\mathbf{x}_{1i}^T, \mathbf{x}_{2i}^T, \dots, \mathbf{x}_{Fi}^T]^T \in \mathbb{R}^{2F}$$

Subspace Clustering Problem

Goal:

- find the number of subspaces and their dimensions
- find a basis for each subspace
- group the sample points into subspaces

Remark: Extension of traditional clustering: clustering and dimension reduction simultaneously

- Rigid motion: an affine subspace of dimension at most 3
- Images of a subject with fixed pose and varying illumination: lie close to a linear subspace of dimension 9.

Prior Work on Subspace Clustering

- **Iterative methods** Alternate between assigning points to subspaces and fitting a subspace to each cluster. (K-subspaces, Median K-flats)
- Algebraic approaches Based on factorization of the data matrix. (GPCA)
- Iterative statistical methods Parametric assumption on data distribution, iterate between clustering and subspace estimation by EM algorithm. (Random Sample Consensus)
- Information-theoretic statistical approaches Minimizes the information-theoretic cost to fit a mixture of degenerate Gaussian to the points, up to a given distortion. (Agglomerative Lossy Compression)
- Spectral clustering-based methods Construct a similarity graph based on data information and then apply spectral clustering. (Local Subspace Affinity, Low-Rank Subspace Clustering)
 Sparse Subspace Clustering (SSC)

Notations

Let $\{S_l\}_{l=1}^n$ be an arrangement of n linear subspaces of dimensions $\{d_l\}_{l=1}^n$ lying in \mathbb{R}^D .

Let $\{y_i\}_{i=1}^N$ be the collection of N data points that are free of noises and lie in the union of the n subspaces.

Let N_I be the number of samples points in subspace S_I and the data matrix

$$m{Y} \equiv [m{y}_1,\ldots,m{y}_N] = [m{Y}_1,\ldots,m{Y}_n] m{\Gamma}$$

where $Y_l \in \mathbb{R}^{D \times N_l}$ is a matrix of all the points in S_l with $N_l > d_l$ and Γ is an unknown permutation matrix.

Self-expressiveness property

Definition

Each data point in a union of subspaces can be efficiently reconstructed by a combination of other points in the dataset.

Subspace-Sparse Representation: represented by a few other points in the same subspace

Self-expressiveness property

Definition

Each data point in a union of subspaces can be efficiently reconstructed by a combination of other points in the dataset.

Subspace-Sparse Representation: represented by a few other points in the same subspace

Specifically, each data point $\mathbf{\emph{y}}_i \in \cup_{l=1}^n \mathcal{S}_l$ can have the representation

$$\mathbf{y}_i = \mathbf{Y}\mathbf{c}_i, c_{ii} = 0$$

where $c_i \equiv (c_{i1}, c_{i2}, \dots, c_{iN})^T$ is the vector of constant coefficients **Goal:** c_i has a few non-zero entries corresponding to data points in the same subspace as y_i

Sparse Optimization Problem

The optimization problem:

$$\min ||\boldsymbol{c}_i||_q \quad s.t. \quad \boldsymbol{y}_i = \boldsymbol{Y}\boldsymbol{c}_i, c_{ii} = 0$$

where c_i is a N dimensional vector of constants on the weights for the other data points and $||.||_q$ is the l_q norm.

Ideally, want to use l_0 norm, but is NP-hard

Sparse Optimization Problem

The optimization problem:

$$\min ||\boldsymbol{c}_i||_q \quad s.t. \quad \boldsymbol{y}_i = \boldsymbol{Y}\boldsymbol{c}_i, c_{ii} = 0$$

where c_i is a N dimensional vector of constants on the weights for the other data points and $||.||_q$ is the l_q norm.

Ideally, want to use l_0 norm, but is NP-hard

Use I_1 norm the convex problem is: For all i = 1, ..., N,

$$\min ||c_i||_1 \ s.t. \ y_i = Yc_i, c_{ii} = 0$$

or in matrix form,

$$\min ||\boldsymbol{C}||_1$$
 s.t. $\boldsymbol{Y} = \boldsymbol{Y}\boldsymbol{C}, diag(\boldsymbol{C}) = 0$

where $C \equiv [c_1, \dots, c_N] \in \mathbb{R}^{N \times N}$ is the matrix whose *i*-th column corresponds to the representation coefficient for y_i .

Clustering using Sparse Coefficients

The optimization gives the sparse coefficient matrix $\boldsymbol{\mathcal{C}}$ as the output. Use the matrix to construct a graph, and apply spectral clustering gives the final clustering result.

Weighted graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\boldsymbol{W})$, where the N data points compose the vertices \mathcal{V} , and $\mathcal{E}\subset\mathcal{V}\times\mathcal{V}$ denotes the set of edges between nodes, \boldsymbol{W} denotes the weights for the edges.

$$\mathbf{W} = |\mathbf{C}| + |\mathbf{C}|^T, \mathbf{W}_{ij} = |c_{ij}| + |c_{ji}|.$$

Sparse Subspace Clustering Algorithm

Algorithm: Sparse Subspace Clustering (SSC)

Input: A set of points $\{y_i\}_{i=1}^N$ lying in a union of n linear subspaces $\{S_l\}_{l=1}^n$.

- 1 Solve the sparse optimization program
- 2 Normalize the columns of the resulting coefficients matrix ${m C}$ as ${m c}_i \leftarrow \frac{{m c}_i}{||{m c}_i||_\infty}$
- 3 Form a similarity graph with N nodes representing the data points. Set the weights on the edges between the nodes by $\mathbf{W} = |\mathbf{C}| + |\mathbf{C}|^T$
- 4 Apply spectral clustering to the similarity graph.

Output: Segmentation of the data: $Y_1, Y_2, ..., Y_n$

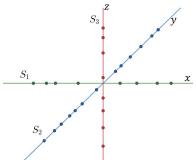
Subspace-Sparse Recovery Theory

Subspace-Sparse Representation: represented by a few other points in the same subspace

Definition (Independent Subspaces)

A collection of subspaces $\{S_i\}_{i=1}^n$ is said to be independent if $dim(\bigoplus_{i=1}^n S_i) = \sum_{i=1}^n dim(S_i)$ where \oplus denotes the direct sum operator.

Independent Subspaces



Subspace-Sparse Recovery Theory

Theorem (Independent Subspaces Recovery)

Consider a collection of data points drawn from n independent subspaces $\{S_i\}_{i=1}^n$ of dimensions $\{d_i\}_{i=1}^n$. Let \mathbf{Y}_i denote N_i data points in S_i , where rank(\mathbf{Y}_i) = d_i , and let \mathbf{Y}_{-i} denote data points in all subspaces except S_i . Then, for every S_i and every nonzero \mathbf{y} in S_i , the I_a -minimization program

$$\begin{bmatrix} \boldsymbol{c}^* \\ \boldsymbol{c}_-^* \end{bmatrix} = \operatorname{argmin} \left\| \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix} \right\|_q \quad \text{s.t.} \quad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{Y}_i & \boldsymbol{Y}_{-i} \end{bmatrix} \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix}$$

for $q<\infty$, recovers a subspace-sparse representation, i.e., $m{c^*}
eq m{0}$ and $m{c}_-^* = m{0}$

Practical Extension: Data Nuisances

Data points contaminated with sparse outlying entries and noise

$$\mathbf{y}_i = \mathbf{y}_i^0 + \mathbf{e}_i^0 + \mathbf{z}_i^0$$

where \mathbf{y}_i^0 is the error-free part of observation and lies perfect on the underlying subspace, $\mathbf{e}_i^0 \in \mathbb{R}^D$ is sparse outlying entries, and $\mathbf{z}_i^0 \in \mathbb{R}^D$ is the noise component.

Utilizing self-expressiveness property of \mathbf{y}_i^0

$$egin{aligned} oldsymbol{y}_i &= \sum_{j
eq i} c_{ij} oldsymbol{y}_j + oldsymbol{e}_i + oldsymbol{z}_i \ oldsymbol{e}_i &= oldsymbol{e}_i^0 - \sum_{j
eq i} c_{ij} oldsymbol{e}_j^0 \ oldsymbol{z}_i &= oldsymbol{z}_i^0 - \sum_{i
eq i} c_{ij} oldsymbol{z}_j^0 \end{aligned}$$

Practical Extension: Data Nuisances

Let matrices \boldsymbol{E} and \boldsymbol{Z} have \boldsymbol{e}_i and \boldsymbol{z}_i as columns, we have the matrix representation:

$$Y = YC + E + Z$$
, $diag(C) = 0$

And hence the optimization program for sparse representation becomes

$$\min || \boldsymbol{C} ||_1 + \lambda_e || \boldsymbol{E} ||_1 + rac{\lambda_z}{2} || \boldsymbol{Z} ||_F^2$$

s.t.
$$\mathbf{Y} = \mathbf{YC} + \mathbf{E} + \mathbf{Z}$$
, $diag(\mathbf{C}) = 0$

Practical Extension: Affine Subspace

Data point y_i in an affine subspace S_l with dimension d_l can be written as an affine combination of $d_l + 1$ other points from S_l .

$$y_i = Yc_i, c_{ii} = 0, \mathbf{1}^Tc_i = 1$$

where c_i has $d_l + 1$ nonzero entries corresponding to points also in S_l . The more general program:

$$\min ||\boldsymbol{C}||_1 + \lambda_e||\boldsymbol{E}||_1 + \frac{\lambda_z}{2}||\boldsymbol{Z}||_F^2$$
s.t. $\boldsymbol{Y} = \boldsymbol{Y}\boldsymbol{C} + \boldsymbol{E} + \boldsymbol{Z}$, $\operatorname{diag}(\boldsymbol{C}) = 0$, $\boldsymbol{1}^T \boldsymbol{C} = \boldsymbol{1}^T$

Real Data Experiments: Motion Segmentation

Dataset: Hopkins 155 dataset. Video sequences along with the features extracted and tracked in all the frames.

The video has frames $f:1,\ldots,F$, and a set of N feature points $\{\mathbf{x}_{fi}\in\mathbb{R}^2\}_{i=1}^N$ is tracked across the frames. For analysis, each feature trajectory \mathbf{y}_i is taken as a data point, where \mathbf{y}_i is obtained by stacking the feature points x_{fi} in the video as

$$\mathbf{y}_i \equiv [\mathbf{x}_{1i}^T, \mathbf{x}_{2i}^T, \dots, \mathbf{x}_{Fi}^T]^T \in \mathbb{R}^{2F}$$

120 videos of two motions (N = 266 and F = 30) 35 videos of 3 motions (N = 398 and F = 29)

The most general version of the SSC is implemented. With/without PCA as preprocessing.

Clustering error (%) of different algorithms on the Hopkins 155 dataset

Algorithm	SSC	LSA	LRSC	K-Subspace				
Algorithm				N-Subspace				
2 Motions, without PCA								
Mean	2.23	20.88	3.98	28.42				
Median	0	14.72	0	33.72				
3 Motions, without PCA								
Mean	5.78	21.09	7.96	32.27				
Median	0.95	22.81	3.40	29.62				
2 Motions, with PCA								
Mean	2.32	3.01	3.89	19.78				
Median	0	0.25	0	1.62				
3 Motions, with PCA								
Mean	5.78	5.19	7.88	21.34				
Median	0.95	1.11	3.39	3.19				

Discussion

Summary

- SSC algorithm
- Guarantee for obtaining Subspace-Sparse representation
- Practical Extensions
- Real application on motion segmentation

Advantages:

- Deal with noises, sparse outlying entries, and affine subspaces directly
- Can deal with subspaces with different unknown dimensions

Further Problem:

- Subspace-sparse recovery guarantee for corrupted data
- Theory for graph connectivity
- Application when number of clusters unknown
- Nonlinear extension
- Application to very large dataset

Reference

- Elhamifar, E. and Vidal, R., 2013. Sparse subspace clustering: Algorithm, theory, and applications. IEEE transactions on pattern analysis and machine intelligence, 35(11), pp.2765-2781.
- G. Liu and S. Yan, "Latent Low-Rank Representation for subspace segmentation and feature extraction," 2011 International Conference on Computer Vision, Barcelona, 2011, pp. 1615-1622, doi: 10.1109/ICCV.2011.6126422.

Question?

Graph Connectivity

For subspaces of dimensions greater than or equal to 4, under odd distribution of data, it is possible that points in the same subspace form multiple components.

Consider a regularization term

$$\|\boldsymbol{C}\|_{r,0} \equiv \sum_{i=1}^{N} I(\|\boldsymbol{c}^{i}\|_{2} > 0)$$

where c^i denotes the i-th row of the matrix C.

The convex relaxation

$$\|\boldsymbol{C}\|_{r,1} \equiv \sum_{i=1}^{N} \|\boldsymbol{c}^i\|_2$$

The optimization program to consider is

$$\min ||C||_1 + \lambda_r ||C||_{r,1}$$
 s.t. $Y = YC, diag(C) = 0$

Definition (Disjoint Subspaces)

A collection of subspaces $\{S_i\}_{i=1}^n$ is said to be disjoint if every pair of subspaces intersect only at the origin. In other words, for every pair of subspaces we have $\dim(S_i \oplus S_j) = \dim(S_i) + \dim(S_i)$, where \oplus denotes the direct sum operator.

To characterize two disjoint subspaces, we can have:

Definition (Smallest Principal Angle)

The smallest principal angle between two subspaces \mathcal{S}_i and \mathcal{S}_j , denoted by θ_{ij} , is defined as

$$cos(\theta_{ij}) \equiv max_{\mathbf{v}_i \ inS_i, \mathbf{v}_j \ inS_j} \frac{\mathbf{v}_i^T \mathbf{v}_j}{||\mathbf{v}_i||_2 ||\mathbf{v}_j||_2}$$

Subspace-Sparse Recovery Theory

For Disjoint subspaces, need to study points in the intersection of subspaces. Let x be a non-zero vector in the intersection of S_i and $\bigoplus_{j\neq i}S_j$. Let

$$\mathbf{a}_i = \operatorname{argmin} ||\mathbf{a}||_1 \quad s.t. \quad \mathbf{x} = \mathbf{Y}_i \mathbf{a}$$

 $\mathbf{a}_{-i} = \operatorname{argmin} ||\mathbf{a}||_1 \quad s.t. \quad \mathbf{x} = \mathbf{Y}_{-i} \mathbf{a}$

Theorem

Consider a collection of data points drawn from n independent subspaces $\{S_i\}_{i=1}^n$ of dimensions $\{d_i\}_{i=1}^n$. Let \mathbf{Y}_i denote N_i data points in S_i , where rank $(\mathbf{Y}_i) = d_i$, and let \mathbf{Y}_{-i} denote data points in all subspaces except S_i . The I_1 minimization

$$\begin{bmatrix} \boldsymbol{c}^* \\ \boldsymbol{c}_-^* \end{bmatrix} = \operatorname{argmin} \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix} \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix} \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix}$$
 s.t. $\boldsymbol{y} = [\boldsymbol{Y}_i \ \boldsymbol{Y}_{-i}] \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{c}_- \end{bmatrix}$

recovers a subspace-sparse representation, i.e., $c^*
eq 0$ and $c_-^* = 0$ if and only if

$$\forall \mathbf{x} \in \mathcal{S}_i \cap (\oplus_{i \neq i} \mathcal{S}_i), \mathbf{x} \neq 0 \implies ||\mathbf{a}_i||_1 < ||\mathbf{a}_{-i}||_1$$

Parameter Choice

$$\mu_{e} \equiv \textit{min}_{i} \textit{max}_{j \neq i} ||\boldsymbol{y}_{i}||_{1}, \quad \mu_{z} \equiv \textit{min}_{i} \textit{max}_{j \neq i} |\boldsymbol{y}_{i}^{T} \boldsymbol{y}_{j}|$$

The choose $\lambda_e \geq \alpha_e/\mu_e$, $\lambda_z \geq \alpha_z/\mu_z$ with α_e , $\alpha_z \geq 1$.

Proposition

Consider the optimization program with noise and sparse outlying entries.

Without the noise term \mathbf{Z} , if $\lambda_e \leq 1/\mu_e$, then there exists at least one data point \mathbf{y}_l for which in the optimal solution we have $(\mathbf{c}_l, \mathbf{e}_l) = (\mathbf{0}, \mathbf{y}_l)$. That is, the data point is taken entirely as outlying entries and is not represented as combination of other data points. Similarly, without the sparse outlying term \mathbf{E} , if $\lambda_z \leq \mu_z$, then there exists at least one data point \mathbf{y}_l for which $(\mathbf{c}_l, \mathbf{z}_l) = (\mathbf{0}, \mathbf{y}_l)$.

Face Clustering Results

Algorithm	SSC	LSA	RANSAC	LRSC	KSubspace			
2 Subjects								
Mean	1.87	33.47	37.45	11.41	45.41			
Median	0	46.09	39.06	11.25	46.88			
Time	57.5	13.7	4240.4	2.0	149.2			
3 Subjects								
Mean	3.30	53.03	49.39	13.97	59.18			
Median	1.04	51.06	50.52	13.87	59.90			
Time	81.1	19.5	6815.0	3.1	536.0			
5 Subjects								
Mean	4.32	58.82	62.10	21.58	67.59			
Median	2.50	57.19	63.12	21.56	67.19			
Time	135.8	29.4	12721.3	11.2	1115.9			
8 Subjects								
Mean	5.89	57.41	787	34.73	72.00			
Median	4.59	57.81	5415	34.37	71.58			
Time	216.0	65.0	15901.7	19.5	2030.1			
10 Subjects								
Mean	7.40	56.04	71.4	51.06	72.03			
Median	5.63	60.47	72.5	50.78	72.34			
Time	326.0	95.3	16393.7	59	3248.0			

ADMM Procedure

Algorithm 2: ADMM Procedure to solve sparse-optimization program

Initialization: Set maxIter = N and errThres = ε . k = 0, Terminate = False. Initialize $C^{(0)}$, $E^{(0)}$, $A^{(0)}$, $\Delta^{(0)}$, $\delta^{(0)}$ to zero.

While (Terminate == False) do

1 Update $\mathbf{A}^{(k+1)}$ by solving

$$(\lambda_z \mathbf{Y}^T \mathbf{Y} + \rho \mathbf{I} + \rho \mathbf{1} \mathbf{1}^T) \mathbf{A}^{(k+1)} = \lambda_z \mathbf{Y}^T (\mathbf{Y} - \mathbf{E}^{(k+1)}) + \rho (\mathbf{1} \mathbf{1}^T + \mathbf{C}^{(k)}) - \mathbf{1} \delta^{(k)T} - \mathbf{\Delta}^{(k)T}$$

- 2 Update $m{C}^{(k+1)} = m{J} diag(m{J})$, where $m{J} = \mathcal{T}_{1}(m{C}^{(k+1)} + m{\Delta}^{(k)}/
 ho)$,
- 3 Update $m{\it E}^{(k+1)} = \mathcal{T}_{\frac{\lambda_e}{k}}(m{\it YA}^{(k+1)} m{\it Y})$,
- 4 Update $\Delta^{(k+1)} = \Delta^{(k)} + \rho(A^{(k+1)} C^{(k+1)}).$
- 5 Update $\delta^{(k+1)} = \delta^{(k)} + \rho(A^{(k+1)T}1 1)$.
- 6 if $(\max\{||\mathbf{A}^{(k+1)} \mathbf{C}^{(k+1)}||_{\infty}, ||\mathbf{A}^{(k+1)T}\mathbf{1} \mathbf{1}||_{\infty}, ||\mathbf{A}^{(k+1)} \mathbf{1}|$ $|\mathbf{A}^{(k)}||_{\infty}$, $||\mathbf{E}^{(k+1)} - \mathbf{E}^{(k)}||_{\infty}$ $\} < \varepsilon$ or $k+1 \ge \text{maxIter}$): Terminate = True

end if

7 k = k + 1.

end while Output: Sparse coefficient matrix $C = C^{(k)}$