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Background
Many data nowadays have a geometric structure that the input data lies on a low
dimensional manifold embedded inside the large-dimensional vector space.

For various data analysis tasks to perform well, we need to understand such
manifold structures of the data.

Our line of work propose to use a graph, called Skeleton, to summarize the
manifold structure and assist various manifold learning tasks.
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Many data nowadays have a geometric structure that the input data lies on a low
dimensional manifold embedded inside the large-dimensional vector space.

For various data analysis tasks to perform well, we need to understand such
manifold structures of the data.
Our line of work propose to use a graph, called Skeleton, to summarize the
manifold structure and assist various manifold learning tasks.
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Example of Skeleton Representation

Sloan Digital Sky Survey (SDSS) data with 5 covariates measuring apparent
magnitude of stars from images taken using 5 photometric filters. Response is the
true redshift.
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Background: Skeleton Clustering

(a) Data (b) Knots (c) Voronoi Cells (d) Skeleton

(e) Dendrogram (f) Segmentation (g) Clustering
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Background: Skeleton Clustering

Algorithm Skeleton Clustering
Input: Observations X1, · · · ,Xn, number of knots k
1. Knot construction. Perform k-means clustering with a large number of k;
the centers are the knots. Generally, we choose k = [

√
n].

2. Edge construction. Apply the Delaunay triangulation to the knots.
3. Edge weights construction. Add density-based similarity weights to each
edge using Voronoi density (also Face density, Tube density) approach.
4. Knots segmentation. Use linkage criterion to segment knots based on the
edge weights into S groups.
5. Assignment of labels. Assign cluster labels to each observation based on
which knot-group of the nearest knot.
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New Task: Regression on Manifold-Valued Input
Instead of clustering the data points, we have scalar response on manifold-valued
input space, and we want to do regression.
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Our Approach: Skeleton Regression Framework

(a) Data (b) Knots (c) Skeleton

(d) S-Kernel Regression (e) Linear Interpolation
Figure: Skeleton Regression illustrated by Two Moon Data (d=2).
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Our Approach: Skeleton Regression Framework

Algorithm Skeleton Regression
Input: Observations (x1,Y1), . . . , (xN ,YN).
1. Skeleton Construction. Construct a skeleton representation of the input
space. Knots and edges can be tuned with subject knowledge.
2. Data Projection. Project the input vectors onto the skeleton structure.
3. Skeleton Regression Function Estimation. Fitting nonparametric regres-
sion functions on the skeleton using kernel regression, linear interpolation, or
additional methods
4. Prediction. Project the feature vectors of new data onto the learnt skeleton
structure and use the estimated regression function for prediction.
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Brief Literature Review
Classical approach to explicitly account for geometric structure takes two steps:
(1) map the data to the tangent space or some embedding space and then
(2) run usual regression methods with transformed data

Pioneered by the Principle Component Regression (PCR) (Massy, 1965) and
the Partial Least Squares (PLS) (Wold, 1975)
Aswani et al. (2011) relate the regression coefficients to exterior derivatives
Cheng and Wu (2013) propose the Manifold Adaptive Local Linear Estimator
for the Regression (MALLER)

Some nonparametric regression approaches can also deal with the manifold
structure of the data

kernel machine learning (Schölkopf and Smola, 2002)
manifold regularization (Belkin et al., 2006)
spectral series approach (Lee and Izbicki, 2016)

In recent years many nonparametric regressors, particularly kNN regression and
kernel Regression were shown to be adaptive to the manifold structure that they
converge at rates that depend only on the intrinsic dimensions of data
(Kpotufe, 2009a,b, 2011; Kpotufe and Garg, 2013; Kpotufe and Verma, 2017).
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Skeleton Construction
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Knots Construction
Some knots are constructed to give a concise representation of the data
structure.
In practice we use k-Means to choose k = [

√
n] (subject to parameter tuning)

knots, where n is the number of samples.

(a) Data (b) Knots
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Edge Construction, Voronoi Cells
The Voronoi cell (Voronoi, 1908), Cj , associated with knot cj is the set of all
points in X whose distance to cj is the smallest compared to other knots. That is,

Cj = {x ∈ X : d(x , cj) ≤ d(x , cℓ) ∀l ̸= j},
where d(x , y) is the usual Euclidean distance.
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Edge Construction, Delaunay Triangulation
Add an edge to a pair of knots if they are neighboring with each other. In
other words, an edge between (ci , cj) is added if C̄i ∩ C̄j ̸= ∅.
Resulting graph is the Delaunay triangulation DT (C) (Delaunay, 1934) of
knots c1, · · · , ck
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Skeleton Segmentation
Density-based weights are assigned to the edges.
Use traditional clustering/segmentation methods such as the hierarchical
clustering to segment the learnt skeleton structure.
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Edge Weight: Voronoi Density
Measures the similarity between knots (cj , cℓ) based on the number of
observations whose 2-nearest knots are cj and cℓ.
Define the 2-NN region as
Ajℓ ≡ {x ∈ X : d(x , ci) > max{d(x , cj), d(x , cℓ)}, ∀i ̸= j , ℓ}.
The Voronoi density (VD)is defined as SVD

jℓ =
P(Ajℓ)
∥cj−cℓ∥ .
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Edge Weight: Voronoi Density Estimation
Let P̂n(Ajℓ) =

1
n
∑n

i=1 I(Xi ∈ Ajℓ) and our estimator is

ŜVD
jℓ =

P̂n(Ajℓ)

∥cj − cℓ∥
. (1)

Essentially counting points in the 2-NN region, which can be computed fast
by k-d tree algorithm
Effect of dimension small
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Data Projection
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Data Projection

Figure: Illustration of projection to the skeleton. The skeleton structure is given by the
black dots and black lines. Data point X1 is projected to S1 on the edge between C1 and
C2. Data point X2 is projected to knot C2 as it’s two closest neighbors C2 and C3 are not
connected by an edge in the skeleton.
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Skeleton-Based Distance

Figure: Illustration of skeleton-based distance. Let C1,C2,C3,C4 be the knots, and let
S2, S3, S4 be the mid-point on the edges E12,E23,E34 respectively. Let S1 bet the
midpoint between C1 and S2 on the edge. Let dij = ∥Ci − Cj∥ denotes the length of the
edge Eij . dS(S1, S2) =

1
4 d12 illustrated by the blue path (m = 0 case).

dS(S2, S3) =
1
2 d12 +

1
2 d23 illustrated by the green path (m = 1 case).

dS(S2, S4) =
1
2 d12 + d23 +

1
2 d34 illustrated by the orange path (m = 2 case).
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Regression Model Fitting
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Skeleton Kernel Regression

Let Kh(.) = K (./h) be a non-negative kernel function with bandwidth h > 0 and
dS the distance on skeleton, the corresponding skeleton-based kernel (S-kernel)
regressor for s ∈ S is

m̂(s) =
∑N

j=1 Kh(dS(Π(xj), s))Yj∑N
j=1 Kh(dS(Π(xj), s))

(2)

A concrete kernel function example is the popular Gaussian kernel that

Kh(dS(sj , sℓ)) = exp

(
− dS(sj , sℓ)2

h2

)
(3)

Notably, the kernel function calculation only depends on the skeleton distances
and hence is independent of the dimension of the original input or the intrinsic
dimension of the manifold structure.

Introduction Skeleton Construction Data Projection Regression on Graph Empirical Results Conclusion References
Jerry Wei Department of Statistics, University of Washington and Yen-Chi Chen Department of Statistics, University of WashingtonSkeleton Regression: A Graph-Based Approach to Estimation on Manifold 22 / 37



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear Spline Regression on Graph
Construct a linear regression model on each edge of the graph while requiring the
predicted values to agree on shared vertices
Can be parameterized by the values on all the knots to get graph-transformed data
Z , where Z = (z1, . . . , zn)

T is a n × v matrix and zj is the length v transformed
data vector for xj encoding proportional weights on the corresponding vertices.

ŷj + pi
j (ŷℓ − ŷj) = (1 − pi

j )ŷj + pi
j ŷℓ = zT

i ŷ (4)

The S-Lspline model in matrix form can be written as

E(y |Z) = βT Z (5)

for β the v × 1 column vector of coefficients, with each coefficient representing
the predicted value on the corresponding knot.
For estimation, we can use ordinary least squares regression to get

β̂ = (ZT Z)−1Zy (6)
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Higher-Order Spline on Graph: Edge Directions

Odd-degree derivatives are directional and are dependent on the directions of
the edges on the graph.
However, many graphs, including the skeleton built in our framework, do not
have built-in directions.
Different edge directions do lead to different spline models on the graph and
do give different empirical performances
Many works on graph-based estimations that use derivatives implicitly
assumed the directions as given a prior (Wang et al., 2016).
Further study on how the change of edge directions can affect such
derivative-related models on graphs can be interesting and can help address
this concern.
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Higher-Order Spline on Graph: Feasibility

Classical spline methods use degree p + 1 polynomial functions to achieve
continuity at p-th order derivative.
Example: univariate cubic splines use polynomial function up to degree 3 to
ensure that up to the second derivatives of the regression function agree at each
knot.

However, on a graph, degree p + 1 polynomial functions may fail to achieve
continuity at p-th order derivative.
Example: For p = 1, we fit a quadratic polynomial function on each edge, and we
want the 1st-order derivatives of the models to agree on shared knots. Assume we
have a complete graph with 6 knots and

(6
2
)
= 15 edges. For each quadratic

function, we have 3 degrees of freedom and hence there are a total of 3 × 15 = 45
degrees of freedom to spare. Then for the constraints, for each vertex there are
(rj − 1)× 2 = (5 − 1)× 2 = 8 conditions to satisfy, where rj = 5 is the degree of
the vertices on the complete 6-knots graph. Consequently, we have 8 × 6 = 48
conditions in total, larger than the degrees of freedom, and hence the specified
quadratic spline model is infeasible.
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Higher-Order Spline on Graph: Feasibility

For the p-th order smoothness spline model to be feasible on general graphs
(including complete graphs), we need 2p + 1 degree polynomials.
For any polynomial with degree less than 2p + 1 the degrees of freedom can
be negative on some graphs.
Requiring degree 2p + 1 polynomials may be too high a demand and can lead
to regression functions that are more flexible than desired. For known sparse
graphs that have only a few edges and loops smaller degree polynomials can
be employed.
Can also be parametrized by fitted values and derivative values on the knots
and be estimated by ordinary least squares regression
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Empirical Results
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Yinyang Data
The input space intrinsically composed of 5 disjoint structures of different
geometric shapes and different sizes: a large ring of 2000 points, two clumps each
with 400 points, and two small circles each with 200 points
fit trigonometric function on the ring and constant function on the other
structures with random Gaussian error
add iid random N(0, 0.1) variables to the input space to increase the dimension of
the input space to a total of 100 dimensions.

Figure: Yinyang Regression Data
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Yinyang Data
We use 5-fold cross-validation to calculate the sum of squared errors (SSE)

skeleton-based kernel regression (S-kernel) with varying bandwidths
Skeleton linear model(S-Lspline) and higher-order splines (S-Qspline, and
S-Cspline) fitted according to the proposed parametrization
Euclidean-distance based k-Nearest-Neighbors (kNN) regressor and
skeleton-distance based kNN (S-kNN) with varying numbers of neighbors
Lasso and Ridge regressions are also fitted with hyper-parameter tuning.

Method SSE Number of knots Parameter
kNN 80.58 - neighbor=21
Ridge 1359.62 - λ = 0.001
Lasso 1351.70 - λ = 0.0025

S-Kernel 77.77 63 bandwidth = 8 hhns
S-kNN 85.48 76 neighbor = 36

S-Lspline 67.98 51 -
S-Qspline 70.57 51 -
S-Cspline 73.18 38 -

Table: Regression results on Yinyang d = 100 data. The best SSE from each method is
listed with the corresponding parameters.
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Lucky Cat Data

Set of 72 gray-scale images of size 128 × 128 pixels, each to be 2D projections of
a 3D lucky cat obtained through rotating the object by 72 equispaced angles on a
single axis.

Figure: A part of the lucky cat images from the COIL-20 processed dataset. Each image
is of size 128 pixels.

The response for estimation is the angle of rotation.
To avoid the circular response issue, we remove the last 8 images from the
sequence and use the first 64 images.
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Lucky Cat Data Performance

Used the leave-one-out cross-validation scheme and same procedure as simulated
dataset

Method SSE Parameter
Knn 888.89 neighbor=9

S-Kernel 1753.43 bandwidth = 4rhns
S-kNN 2604.17 enighbor = 6

S-Lspline 338.12 -
S-Qspline 2143.47 -
S-Cspline 9449425341 -

Table: Regression results on LuckyCat data from COIL-20. The best SSE from each
method is listed with the corresponding parameters used.
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SDSS Data

Sloan Digital Sky Survey (SDSS) data with 5 covariates measuring apparent
magnitude of stars from images taken using 5 photometric filters. Response is the
true redshift.
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Conclusion

Contribution:
Skeleton to represent the geometry of data and assist in various data analysis
tasks
Apply nonparametric regression techniques on graphs (kernel regression,
splines, kNN)
Discuss the feasibility of higher-order splines on graphs and the issue of edge
directions
Empirical results demonstrating the usefulness of our framework

Some possible future directions:
Relate skeleton construction to Persistent Homology
Other regression approaches applied on graph representations
Theoretical analysis of the constructed skeleton
Longitudinal data/ online updating of the skeleton representation
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Thanks for listening!
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