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Abstract

• Introduce a skeleton clustering framework that
combines various clustering approaches.
•Propose multiple density-based similarity

measures that scale well with dimensions.
•Prove the consistency of the sample estimates of the
proposed similarity measures.
•Use simulations and real data to show the reliability and
usefulness of our method in different scenarios.

Motivation

•Task: Cluster high-dimensional data with unbalanced groups
and complex cluster shapes.
•Density-based clustering advantages: can handle irregular
shapes; nice interpretation and estimation based on the
underlying PDF. Limitation: not suitable for
high-dimensional data due to curse of dimensionality.
• Intuition: Borrow the idea of merging a large number

of clusters from (Peterson et al., 2018; Baudry et al.,
2010).Also propose density-based similarity measures
suited for high-dimensional settings.

Skeleton Clustering Framework

Algorithm 1 Skeleton Clustering
Input: Observations X1, · · · , Xn; final number of clusters S.
1. Knot construction. Perform k-means clustering with a
large number of k; the centers are the knots.
2. Edge construction. Apply approximate Delaunay triangu-
lation to the knots.
3. Edge weights construction. Add weights to each edge
using Voronoi density, Face density, or Tube density approach.
4. Knots segmentation. Use linkage criterion to segment
knots based on the edge weights into S groups.
5. Assignment of labels. Assign cluster labels to each ob-
servation based on which knot-group of the nearest knot.

Knots Construction

Knots are constructed to give a concise representation of the data
structure. In practice we use k-Means to choose k = [

√
n] knots,

where n is the number of samples.
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Edge Construction

The Voronoi cell (Voronoi, 1908), Cj, associated with knot cj is
the set of all points in X whose distance to cj is the smallest
compared to other knots. That is,

Cj = {x ∈ X : d(x, cj) ≤ d(x, c`) ∀l 6= j},
where d(x, y) is the usual Euclidean distance.

(a) Voronoi Cells (b) Delaunay Triangulation

An edge between knots (ci, cj) is added if C̄i∩C̄j 6= ∅. Resulting
graph is the Delaunay triangulation DT (C) (Delaunay, 1934) of
knots c1, · · · , ck

Skeleton Segmentation

Density-based weights are assigned to the edges. We then use
traditional clustering/segmentation methods such as the hierar-
chical clustering to segment the learnt skeleton structure.

(a) Dendrogram (b) Segmented Skeleton

Label Assignment

Assign the individual labels according to the segmented skeleton.
In practice we assign the labels the same as the nearest knot.

Edge Weight: Voronoi Density (VD)

Define the 2-NN region as Aj` ≡ {x ∈ X : d(x, ci) >
max{d(x, cj), d(x, c`)},∀i 6= j, `}. The Voronoi density
(VD)is defined as SV Dj` = P(Aj`)

‖cj−c`‖.

Let P̂n(Aj`) = 1
n

∑n
i=1 I(Xi ∈ Aj`) and our estimator is

ŜV Dj` = P̂n(Aj`)
‖cj − c`‖

.

which is dimension independent

Edge Weight: Face Density (FD)

For connected components we expect to see many observations
around their mutual boundary. Let the face region between two
knots cj, c` be Fj` ≡ Cj ∩ C`. Then the Face Density (FD) is
defined as the PDF integrated over the face region:

SFDj` = ∫
Fj` p(x)dx = ∫

Fj` dP(x).
For estimation, note that the boundary of two Voronoi regions
is orthogonal to the line passing through the two corresponding
knots and is at the middle point. Let Πj`(x) be the projection
of x ∈ X onto the line passing through cj and c`. The estimator
ŜFDj` is defined as

ŜFDj` = 1
nh

ΣXi∈Cj∪C`
K


Πj`(Xi)− (c` + cj)/2

h



which is 1-D KDE.

Edge Weight: Tube Density (TD)

Define a disk area centered at x with radius R and normal direc-
tion ν as Disk(x,R, ν) = {y : ||x− y||2 ≤ R, (x− y)Tν = 0}.
Define the integrated density in the disk region as

pDiskj`,R(t) = P (Disk(cj + t(c` − cj), R, c` − cj))
= ∫

Disk(cj+t(c`−cj),R,c`−cj) p(x)dx.
Tube density (TD) is the minimal disk density along the central
line

STDj` = inf
t∈[0,1]

pDiskj`,R(t).

Let Πj`(x) be the projection of a point x on the line through
cj, c`. Get the estimate p̂Diskj`,R(t) as

1
nh

Σn
i=1K


Πj`(Xi)− cj − t(c` − cj)

h

I(||Xi − Πj`(Xi)|| ≤ R)

Estimate the TD as
ŜTDj` = min

t∈[0,1]
p̂Diskj`,R(t).

Simulation: Yinyang Data

• Intrinsically 2-dimensional data containing 5 components
with different shapes. (n = 3200, k = 57)
•Additional variables from Gaussian noise N(0, 0.1). Increase
the dimension of noise variables so that the total dimensions
are d = 10, 100, 500, 1000.
•Empirically compare: direct single-linkage hierarchical
clustering (SL), direct k-means clustering (KM), spectral
clustering (SC), skeleton clustering with average distance
density (AD), skeleton clustering with Voronoi density
(Voron), skeleton clustering with Face density (Face), and
skeleton clustering with Tube density (Tube).

Conclusion & Future Work

•Clustering high-dimensional data with complex cluster
shapes.
•Bypass the curse of dimensionality by using surrogate
density such as Voronoi density, Face density, and Tube
density. Showed the consistency of estimated similarity
measures.

Some possible future directions:
• Skeleton clustering with similarity matrix.
•Theory accounting for the randomness of knots.
•Detection boundary points between clusters.
•Clustering after dimension reduction.

Additional Info

Code: https://github.com/JerryBubble/skeletonClus


