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Density-based Clustering

Problem: Cluster high-dimensional data with unbalanced groups and complex
cluster shapes.

Idea: a cluster in a data space is a contiguous region of high point density

Examples: Mode Clustering, Level-Set Clustering, DBSCAN, Cluster Tree

Advantages:
capable of finding clusters with irregular shapes
nice interpretation based on the underlying PDF
can view the clustering problem as an estimation problem

Limitation: the curse of dimensionality for density estimation step, and hence not
suitable for high-dimensional data.
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Clustering High-dimensional Data

Figure: Yinyang Data with dimension 200.
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Main Intuitions

Borrow the idea of merging a large number of clusters from (Peterson et al.,
2018; Fred and Jain, 2005; Maitra, 2009; Baudry et al., 2010).
Propose density-based similarity measures similar to that in (Nugent and
Stuetzle, 2010) but are suited for high-dimensional settings.

Main Contributions
We introduce a skeleton clustering framework that combines various
clustering approaches.
We propose multiple density-based similarity measures scale well with
dimensions.
We use simulation to show the reliability of our method in agnostic scenarios.
We show that our method can lead to meaningful clusters in real data.
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Skeleton Clustering Framework
Let our training data X = {X1, . . . ,Xn} be an IID sample from an unknown
distribution with density p supported on a compact set X ∈ Rd . The goal of
clustering is to partition X into clusters X1, . . .XS , where S is the number of
clusters.

Algorithm 1 Skeleton Clustering
Input: Observations X1, · · · ,Xn, final number of clusters S.
1. Knot construction. Perform k-means clustering with a large number of k;
the centers are the knots. Generally, we choose k = [

√
n].

2. Edge construction. Apply the Delaunay triangulation to the knots.
3. Edge weights construction. Add weights to each edge using either Voronoi
density, Face density, or Tube density approach.
4. Knots segmentation. Use linkage criterion to segment knots based on the
edge weights into S groups.
5. Assignment of labels. Assign cluster labels to each observation based on
which knot-group of the nearest knot.
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Knots Construction
Some knots are constructed to give a concise representation of the data
structure.
In practice we use k-Means to choose k = [

√
n] knots, where n is the number

of samples.
Empirically robustness performance with sufficient number of knots.

(a) Data (b) Knots
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Edge Construction, Voronoi Cells
The Voronoi cell (Voronoi, 1908), Cj , associated with knot cj is the set of all
points in X whose distance to cj is the smallest compared to other knots. That is,

Cj = {x ∈ X : d(x , cj) ≤ d(x , cℓ) ∀l ̸= j},
where d(x , y) is the usual Euclidean distance.
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Edge Construction, Delaunay Triangulation
Add an edge to a pair of knots if they are neighboring with each other. In
other words, an edge between (ci , cj) is added if C̄i ∩ C̄j ̸= ∅.
Resulting graph is the Delaunay triangulation DT (C) (Delaunay, 1934) of
knots c1, · · · , ck
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Skeleton Segmentation
Density-based weights are assigned to the edges (discussed later).
Use traditional clustering/segmentation methods such as the hierarchical
clustering to segment the learnt skeleton structure.
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Skeleton Segmentation

The segmented skeleton is:
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Label Assignment
Assign the individual labels according to the segmented skeleton
In practice we assign the labels the same as the nearest knot.
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Edge Weight: Voronoi Density
Measures the similarity between knots (cj , cℓ) based on the number of
observations whose 2-nearest knots are cj and cℓ.
Define the 2-NN region as
Ajℓ ≡ {x ∈ X : d(x , ci) > max{d(x , cj), d(x , cℓ)},∀i ̸= j , ℓ}.
The Voronoi density (VD)is defined as SVD

jℓ =
P(Ajℓ)
∥cj−cℓ∥ .
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Edge Weight: Voronoi Density Estimation
Let P̂n(Ajℓ) =

1
n
∑n

i=1 I(Xi ∈ Ajℓ) and our estimator is

ŜVD
jℓ =

P̂n(Ajℓ)

∥cj − cℓ∥
. (1)

Essentially counting points in the 2-NN region, which can be computed fast
by k-d tree algorithm (Bentley, 1975)
Dimension independent
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Edge Weight: Face Density (FD)
For connected components we expect to see many observations around their
mutual boundary.
The Face Density (FD) as the PDF integrated over the face region.
let the face region between two knots cj , cℓ be Fjℓ ≡ Cj ∩ Cℓ. Then
SFD

jℓ =
∫

Fjℓ
p(x)dx =

∫
Fjℓ

dP(x).
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Edge Weight: Face Density Estimation
The boundary of two Voronoi regions is orthogonal to the line passing
through the two corresponding knots and is at the middle point.
Let Πjℓ(x) be the projection of x ∈ X onto the line passing through cj and cℓ
The estimator ŜFD

jℓ is defined as

ŜFD
jℓ =

1
nh

∑
Xi∈Cj∪Cℓ

K
(
Πjℓ(Xi)− (cℓ + cj)/2

h

)
This is 1-D KDE.
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Edge Weight: Tube Density (TD)

Similar to face density but has a predefined regular shape.
Define a disk area centered at x with radius R and normal direction ν as

Disk(x ,R, ν) = {y : ||x − y ||2 ≤ R, (x − y)Tν = 0}

Parameterize the central line through cj , cℓ as {cj + t(cℓ − cj) : t ∈ [0, 1]}.
Examine the integrated density within the disks along the central line.
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Edge Weight: Tube Density (TD)
Define the integrated density (called disk density) in the disk region as

pDiskjℓ,R(t) = P (Disk(cj + t(cℓ − cj),R, cℓ − cj)) =

∫
Disk(cj+t(cℓ−cj ),R,cℓ−cj )

p(x)dx .

Tube density (TD) is the minimal disk density along the central line, i.e.,
STD

jℓ = inf
t∈[0,1]

pDiskjℓ,R(t). (2)
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Edge Weight: Tube Density Estimation

Similar to the FD, estimate the TD by projected KDE.
Πjℓ(x) be the projection of a point x on the line through cj , cℓ.Πjℓ(x) be the
projection of a point x on the line through cj , cℓ.
Estimate the pDisk via

p̂Diskjℓ,R(t) =
1
nh

n∑
i=1

K
(
Πjℓ(Xi)− cj − t(cℓ − cj)

h

)
I(||Xi − Πjℓ(Xi)|| ≤ R)

Estimate the TD as
ŜTD

jℓ = min
t∈[0,1]

p̂Diskjℓ,R(t). (3)
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Simulation: Yinyang Data

Sample size n = 3200 (k = 57 ≈
√

3200)
Increase the dimension of noise variables to make dimensions
d = 10, 100, 500, 1000.
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Yinyang Data Clustering Performance
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Data with Noise
Added 640 (20% of the true signals) noisy points to the Yinyang dataset
(d = 1000)
Use Voronoi density and apply single linkage for knot segmentation.
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Data with Noise
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Overlapping Clusters

Add additional noises to make the three structures overlap
Using Single linkage for knots segmentation fails to discover the true
structure.
Using average linkage recovers the underlying three components.
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Zipcode Data
2000 16 × 16 images of handwritten Hindu-Arabic numerals from (Stuetzle
and Nugent, 2010).
‘denoised’ data: Estimate the density of each observation by

√
n-NN density

estimator and remove 10% observation with the lowest density.
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GvHD Data
Flow cytometry data from (Brinkman et al., 2007)
9083 observations from a patient with graft-versus-host disease (GvHD) and
6809 observations from a control patient.
4 biomarker variables, CD4, CD8β, CD3, and CD8.
Previous studies (Brinkman et al., 2007; Baudry et al., 2010) identified high
values of CD3, CD4, CD8β cell sub-populations in the GvHD positive sample.
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GvHD Data
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GvHD Data

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Size 202 948 3881 1859 338 17 812 468 6191 251 37 478 402 8
Prop .458 .343 .008 .296 .341 .000 .934 .690 .888 .673 .669 .794 .841 .310

p-value .32 1e-19 0 8e-63 6e-08 1e-04 3e-102 3e-13 0 1e-06 .11 2e-29 8e-33 .52
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Conclusion

Clustering high-dimensional data with complex cluster shapes.
Bypass the curse of dimensionality by using surrogate density such as
Voronoi density, face density, and tube density

Some possible future directions:
Skeleton clustering with similarity matrix.
Accounting for the randomness of knots.
Detection boundary points between clusters.
Clustering after dimension reduction.
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Thanks for listening!
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